Castillo, P., and Saad, Y. (1997). Tensor Sum Approximation Preconditioners. Proc. Eighth SIAM Conference on Parallel Processing for Scientific Computing.

Chartier, P., and Philippe, B. (1997). Solution of Markov Processes by Waveform Relaxation Methods. Technical Report, IRISA, University of Rennes, France.

Ehle, B. L., and Lawson, J. D. (1975). Generalized Runge-Kutta processes for stiff initial-value problems. *J. Inst. Maths. Appl.*
**16**, 11-21.

Friesner, R. A., Tuckerman, L. S., Dornblaser, B. C., and Russo, T. U. (1989). A method for exponential propagation of large systems of stiff nonlinear differential equations. *J. Sci. Comput.*
**4**, 327-354.

Gallopoulos, E., and Saad, Y. (1992). Efficient solution of parabolic equations by Krylov approximation methods. *SIAM J. Sci. Stat. Comput.*
**13**(5), 1236-1264.

Hairer, E., Norsett, S. P., and Wanner, G. (1993). *Solving Ordinary Differential Equations I*, 2nd Ed., Springer-Verlag, Berlin.

Hochbruck, M., and Lubich, C. (1997). On Krylov subspace approximations to the matrix exponential operator. *SIAM J. Numer. Anal.*
**34**, 1911-1925.

Hochbruck, M., Lubich, C., and Selhofer, H. (1998). Exponential integrators for large systems of differential equations. *SIAM J. Sci. Comput.*
**19**(5), 1552-1574.

Knizhnerman, L. A. (1991). Computations of functions of unsymmetric matrices by means of Arnoldi's method. *J. Comput. Math. Math. Phys.*
**31**(1), 5-16.

Lawson, J. D. (1967). Generalized Runge-Kutta processes for stable systems with large Lipschitz constants. *SIAM J. Numer. Anal.*
**4**(3), 372-380.

Lawson, J. D. (1972). Some Numerical Methods for Stiff Ordinary and Partial Differential Equations. Proc. Sec. Manitoba Conference on Numerical Mathematics, pp. 27-34.

Lawson, J. D., and Swayne, D. A. (1980). High-order near best uniform approximations to the solution of heat conduction problems. *Proc. IFIP Cong.*
**80**, 741-746.

Lawson, J. D., and Swayne, D. A. (1986). Reduction of matrix factorizations in solvers for stiff ordinary differential equations. *Cong. Numer.* (52), 147-152.

Nour-Omid, B. (1989). Applications of the Lanczos algorithm. *Comput. Phys. Commun.* (53), 153-168.

Moler, C. B., and VanLoan, C. F. (1978). Nineteen dubious ways to compute the exponential of a matrix. *SIAM Rev.*
**20**(4), 801-836.

Saad, Y. (1992). Analysis of some Krylov subspace approximations to the matrix exponential operator. *SIAM J. Numer. Anal.*
**29**(1), 209-228.

Saad, Y. (1990). SPARSKIT: A Basic Tool Kit for Sparse Matrix Computations. Technical Report 90-20, Research Institute for Advanced Computer Science, NASA Ames Research Center, Moffet Field, California.