Journal of Optimization Theory and Applications

, Volume 95, Issue 3, pp 717–722

Characterization of R-Evenly Quasiconvex Functions

  • J. E. Martínez-Legaz
Article

DOI: 10.1023/A:1022690326118

Cite this article as:
Martínez-Legaz, J.E. Journal of Optimization Theory and Applications (1997) 95: 717. doi:10.1023/A:1022690326118

Abstract

A function defined on a locally convex space is called evenly quasiconvex if its level sets are intersections of families of open half-spaces. Furthermore, if the closures of these open halfspaces do not contain the origin, then the function is called R-evenly quasiconvex. In this note, R-evenly quasiconvex functions are characterized as those evenly-quasiconvex functions that satisfy a certain simple relation with their lower semicontinuous hulls.

Quasiconvex functionsdualitygeneralized conjugation

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • J. E. Martínez-Legaz
    • 1
  1. 1.Departament d'Economia i d'Història Económica and CODEUniversitat Autònoma de BarcelonaBellaterraSpain