Nonstationary Iterated Tikhonov Regularization

  • M. Hanke
  • C. W. Groetsch

DOI: 10.1023/A:1022680629327

Cite this article as:
Hanke, M. & Groetsch, C.W. Journal of Optimization Theory and Applications (1998) 98: 37. doi:10.1023/A:1022680629327


A convergence rate is established for nonstationary iterated Tikhonov regularization, applied to ill-posed problems involving closed, densely defined linear operators, under general conditions on the iteration parameters. It is also shown that an order-optimal accuracy is attained when a certain a posteriori stopping rule is used to determine the iteration number.

Ill-posed problems Tikhonov regularization Lardy's method discrepancy principle 

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • M. Hanke
    • 1
  • C. W. Groetsch
    • 2
  1. 1.Fachbereich Mathematik, Universität KaiserslauternKaiserslauternGermany
  2. 2.Department of Mathematical SciencesUniversity of CincinnatiCincinnati

Personalised recommendations