Journal of Theoretical Probability

, Volume 11, Issue 2, pp 303–330

Feller Processes Generated by Pseudo-Differential Operators: On the Hausdorff Dimension of Their Sample Paths

Authors

  • René L. Schilling
Article

DOI: 10.1023/A:1022678219821

Cite this article as:
Schilling, R.L. Journal of Theoretical Probability (1998) 11: 303. doi:10.1023/A:1022678219821

Abstract

Let {Xt}t≥0 be a Feller process generated by a pseudo-differential operator whose symbol satisfiesÇ∈∝n|q(Ç,ξ)|≤c(1=ψ)(ξ)) for some fixed continuous negative definite function ψ(ξ). The Hausdorff dimension of the set {Xt:t∈E}, E ⊂ [0, 1] is any analytic set, is a.s. bounded above by βψ dim E. βψ is the Blumenthal−Getoor upper index of the Levy Process associated with ψ(ξ).

Levy-type processHausdorff dimensionFeller semigrouppseudo-differential operator

Copyright information

© Plenum Publishing Corporation 1998