1.

N. Bergeron and A.M. Garsia, “Zonal polynomials and domino tableaux,” preprint.

2.

C.W. Curtis and I. Reiner, *Methods of Representation Theory, Vol. I*, Wiley, New York, 1981.

3.

P. Diaconis, *Group Representations in Probability and Statistics,* Institute of Mathematical Statistics, Hayward, CA, 1988.

4.

P.N. Hoffman and J.F. Humphreys, *Projective representations of the symmetric groups*, Oxford Univ. Press, Oxford, to appear.

5.

H. Jack, “A class of symmetric functions with a parameter,” *Proc. Royal Society Edinburgh Sect. A,* vol. 69, pp. 1–18, 1970.

6.

A.T. James, “Zonal polynomials of the real positive definite symmetric matrices,” *Annals of Mathematics,* vol. 74, pp. 475–501, 1961.

7.

A.T. James and A. Kerber, *The Representation Theory of the Symmetric Group,* Addison-Wesley, Reading, MA, 1981.

8.

T. Józefiak, “Characters of projective representations of symmetric groups,” *Expositiones Mathematicae*, vol. 7, pp. 193–247, 1989.

9.

T. Koornwinder, private communication.

10.

D.E. Littlewood, *The Theory of Group Characters,* 2nd ed., Oxford University Press, Oxford, 1950.

11.

I.G. Macdonald, *Symmetric Functions and Hall Polynomials,* Oxford University Press, Oxford, 1979.

12.

I.G. Macdonald, “Commuting differential operators and zonal spherical functions,” in *Algebraic Groups, Utrecht 1986,* (A.M. Cohen et al., eds.), pp. 189–200, Lecture Notes in Mathematics, Vol. 1271, Springer-Verlag, Berlin, 1987.

13.

A.O. Morris, “The spin representation of the symmetric group,” *Canadian Journal of Mathematics,* vol. 17, pp. 543–549, 1965.

14.

J.J.C. Nimmo, “Hall-Littlewood symmetric functions and the BKP equation,” *Journal of Physics A,* vol. 23, pp. 751–760, 1990.

15.

P. Pragacz, “Algebro-geometric applications of Schur *S*-and *Q*-polynomials,” in *Séminaire d'algebre Dubreil-Malliavin 1989–90,* Springer-Verlag, Berlin, to appear.

16.

I. Schur, “Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen” *Journal Reine Angew. Mathematics,* vol. 139, pp. 155–250, 1911.

17.

A.N. Sergeev, “The tensor algebra of the identity representation as a module over the Lie superalgebras *gl*(*n,m*) and *Q*(*n*),” *Mathematics USSR Sbornik,* vol. 51, pp. 419–427, 1985.

18.

R.P Stanley, “Some combinatorial properties of Jack symmetric functions,” *Advances in Mathematics,* vol. 77, pp. 76–115, 1989.

19.

J.R. Stembridge, “Shifted tableaux and the projective representations of symmetric groups,” *Advances in Mathematics,* vol. 74, pp. 87–134, 1989.

20.

J.R. Stembridge, “Nonintersecting paths, pfaffians and plane partitions,” *Advances in Mathematics,* vol. 83, pp. 96–131, 1990.

21.

J.R. Stembridge, “On symmetric functions and the spin characters of *S*
_{n},” in *Topics in Algebra,* (S. Balcerzyk et al., eds.), Banach Center Publications, vol. 26, part 2, Polish Scientific Publishers, Warsaw, pp. 433–453, 1990.

22.

Y. You, “Polynomial solutions of the BKP hierarchy and projective representations of symmetric groups,” in *Infinite-Dimensional Lie Algebras and Groups,* (V.G. Kac, ed.) World Scientific, Teaneck, NJ, pp. 449–464, 1989.