Aghaei, M. and Ardeshir, M., 2000, “A bounded translation of intuitionistic propositional logic into basic propositional logic,”

*Mathematical Logic Quarterly*
**46**, 199–206.

CrossRefAghaei,M. and Ardeshir, M., 2001, “Gentzen-style axiomatizations for some conservative extensions of basic propositional logic,”

*Studia Logica*
**68**, 263–285.

CrossRefArdeshir, M., 1995, “Aspects of basic logic,” Ph.D. Thesis, Marquette University, Milwaukee.

Ardeshir, M. and Ruitenburg, W., 1998, “Basic propositional calculus I,” *Mathematical Logic Quarterly*
**44**, 317–343.

Ardeshir, M. and Ruitenburg, W., 2001, “Basic propositional calculus II. Interpolation,” *Archive for Mathematical Logic*
**40**, 349–364.

Barber, A., 1997, “Linear type theories, semantics and action calculi,” Ph.D. Thesis, LFCS, University of Edinburgh.

Bierman, G.M. and de Paiva, V.C.V., 2000, “On an intuitionistic modal logic,” *Studia Logica*
**65**, 383–416.

Davies, R. and Pfenning, F., 1996, “A modal analysis of staged computation,” pp. 258–270 in *Proceedings of the 23rd Annual Symposium on Principles of Programming Languages, St. Petersburg Beach, FL*, G. Steele, Jr., ed., New York: ACM Press.

Gentzen, G., 1935, “Untersuchungen über das logische Schliessen,” *Mathematische Zeitschrift*
**39**, 176–210, 405–431. English translation: pp. 68–131 in *The Collected Papers of Gerhard Gentzen*, M.E. Szabo, ed., Amsterdam: North-Holland.

Girard, J.-Y., 1993, “On the unity of logic,” *Annals of Pure and Applied Logic*
**59**, 201–217.

Heuerding, A., Seyfried, M., and Zimmermann, H., 1996, “Efficient loop-check for backward proof search in some non-classical propositional logics,” pp. 210–225 in *Proceedings of Theorem Proving with Analytic Tableaux and Related Methods, 5th International Workshop, TABLEAUX’ 96, Terrasini, Palermo, Italy*, P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, eds., Lecture Notes in Artificial Intelligence, Vol. 1071, Berlin: Springer-Verlag.

Hodas, J.S. and Miller, D., 1994, “Logic programming in a fragment of intuitionistic linear logic,” *Information and Computation*
**110**, 327–365.

Ishii, K., Kashima, R., and Kikuchi, K., 2000, “Sequent calculi for Visser's propositional logics,” *Notre Dame Journal of Formal Logic*, to appear.

Kikuchi, K., 2002, “Dual-context sequent calculus and strict implication,” *Mathematical Logic Quarterly*
**48**, 87–92.

Masini, A., 1992, “2-Sequent calculus: A proof theory of modalities,” *Annals of Pure and Applied Logic*
**58**, 229–246.

Ruitenburg, W., 1999, “Basic logic, K4, and persistence,” *Studia Logica*
**63**, 343–352.

Sasaki, K., 1998, “A Gentzen-style formulation for Visser's propositional logic,” *Nanzan Management Review*
**12**, 343–351.

Sasaki, K., 1999, “Formalizations for the consequence relation of Visser's propositional logic,” *Reports on Mathematical Logic*
**33**, 65–78.

Suzuki, Y., Wolter, F., and Zakharyaschev, M., 1998, “Speaking about transitive frames in propositional languages,” *Journal of Logic, Language and Information*
**7**, 317–339.

Szabo, M.E., ed., 1969, *The Collected Papers of Gerhard Gentzen*, Amsterdam: North-Holland.

Visser, A., 1981, “A propositional logic with explicit fixed points,” *Studia Logica*
**40**, 155–175.

Wansing, H., 1997, “Displaying as temporalizing, sequent systems for subintuitionistic logics,” pp. 159–178 in *Logic, Language and Computation*, S. Akama, ed., Dordrecht: Kluwer Academic Publishers.