, Volume 22, Issue 4, pp 419-433

The Role of Cadherin Endocytosis in Endothelial Barrier Regulation: Involvement of Protein Kinase C and Actin-Cadherin Interactions

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


We have previously reported that exposure of endothelial monolayers to low (0.12 mM) extracellular calcium significantly decreased the endothelial solute barrier, and that this effect was reversed by restoring ‘normal’ (1.2 mM) calcium (1). This effect was shown to be dependent on cadherins, however the molecular mechanisms through which barrier was altered by low calcium were not characterized. Here we investigated the mechanism of increased endothelial permeability produced by low calcium exposure. Endothelial permeability was significantly increased by exposure to low (0.12 mM) calcium; this effect was attenuated by pre-treatment with the protein kinase C (PKC) inhibitor, staurosporine (2 × 10−7 M) for 30 min. Cell border retraction and gap formation produced by low calcium was also prevented by staurosporine. Treatment of monolayers with 0.12 mM calcium also stimulated the endocytosis of endothelial cadherins. This low calcium mediated cadherin endocytosis was also prevented by pretreatment with staurosporine. Low calcium mediated endocytosis was also prevented by the actin filament toxin, cytochalasin D (1 ug/ml, 30 min). We conclude that the mechanism of low calcium mediated loss of endothelial barrier function is mediated in part by a PKC dependent endocytosis of endothelial cadherins, which may involve interactions with the actin cytoskeleton. Physiological regulation of the in vivo endothelial barrier may also involve PKC dependent-actin mediated endocytosis of cadherin junctional elements.