1.

Facchinei, F., and Kanzow, C., *Beyond Monotonicity in Regularization Methods for Nonlinear Complementarity Problems*, SIAM Journal on Optimization, Vol. 37, pp. 1150–1161, 1999.

2.

Ravindran, G., and Gowda, M. S., *Regularization of P*
_{0}-*Functions in Box Variational Inequality Problems*, SIAM Journal on Control and Optimization, to appear.

3.

Sznajder, R., and Gowda, M. S., *On the Limiting Behavior of the Trajectory of the Regularized Solution of a P*
_{0}-*Camplementarity Problem, Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods*, Edited by M. Fukushima and L. Qi, Kluwer Academic Publications, pp. 371–379, 1998.

4.

Kanzow, C., and Fukushima, M., *Theoretical and Numerical Investigation of the D-Gap Function for Box Constrained Variational Inequalities*, Mathematical Programming, Vol. 83, pp. 55–87, 1998.

5.

Harker, P. T., and Pang, J. S., *Finite-Dimensional Variational Inequality and Nonlinear Complementarity Problems: A Survey of Theory, Algorithms, and Applications*, Mathematical Programming, Vol. 9, 624–645, 1999.

6.

MorÉ, J. J., and Rheinboldt, W. C., *On P-and S-Functions and Related Classes of n-Dimensional Nonlinear Mappings*, Linear Algebra and Applications, Vol. 6, pp. 45–68, 1973.

7.

Karamardian, S., and Schaible, S., *Seven Kinds of Monotone Maps*, Journal of Optimization Theory and Applications, Vol. 66, pp. 37–46, 1990.

8.

Chen, B., and Chen, X., *A Global and Local Superlinear Continuation-Smoothing Method for P*
_{0} + *R*
_{0}
*and Monotone NCP*, SIAM Journal on Optimization, Vol. xx, pp. xxx-xxx, xxxx.

9.

Subramanian, P. K., *Note on Least Two Norm Solution of Monotone Complementarity Problems*, Applied Mathematics Letters, Vol. 1, pp. 395–397, 1988.

10.

Peng, J. M., *Equivalence of Variational Inequality Problems to Unconstrained Minimization*, Mathematical Programming, Vol. 78, pp. 347–356, 1997.

11.

Yamashita, N., Taji, K., and Fukushima, M., *Unconstrained Optimization Reformulations of Variational Inequality Problems*, Journal of Optimization Theory and Applications, Vol. 92, pp. 439–456, 1997.

12.

Mangasarian, O. L., and Solodov, M. V., *Nonlinear Complementarity as Unconstrained and Constrained Minimization*, Mathematical Programming, Vol. 62, pp. 277–297, 1993.

13.

Fukushima, M., and Pang, J. S., *Minimizing and Stationary Sequences of Merit Functions for Complementarity Problems and Variational Inequalities*, Complementarity and Variational Problems: State of the Art, Edited by M. C. Ferris and J. S. Pang, SIAM Philadelphia, Pennsylvania, pp. 91–104, 1997.