Skip to main content
Log in

TROSY experiment for refinement of backbone ψ and φ by simultaneous measurements of cross-correlated relaxation rates and 3,4 J HαHN coupling constants

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The TROSY principle has been introduced into a HNCA experiment, which is designed for measurements of the intraresidual and sequential Hα-Cα/HN-N dipole/dipole and Hα-Cα/N dipole/CSA cross-correlated relaxation rates. In addition, the new experiment provides values of the 3,4 J Hα HN coupling constants measured in an E.COSY manner. The conformational restraints for the ψ and φ angles are obtained through the use of the cross-correlated relaxation rates together with the Karplus-type dependencies of the coupling constants. Improved signal-to-noise is achieved through preservation of all coherence transfer pathways and application of the TROSY principle. The application of the [15N,13C]-DQ/ZQ-[15N,1H]-TROSY-E.COSY experiment to the 16 kDa apo-form of the E. coli Heme Chaperon protein CcmE is described. Overall good agreement is achieved between ψ and φ angles measured with the new experiment and the average values determined from an ensemble of 20 NMR conformers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abragam, A. (1961) The Principles of Nuclear Magnetism, Clarendon Press, Oxford.

    Google Scholar 

  • Case, D.A. (1999) J. Biomol. NMR, 15, 95–102.

    Google Scholar 

  • Chiarparin, E., Pelupessy, P., Ghose, R. and Bodenhausen, G. (1999) J. Am. Chem. Soc., 121, 6876–6883.

    Google Scholar 

  • Ernst, M. and Ernst, R.R. (1994) J. Magn. Reson. Ser., A110, 202–213.

    Google Scholar 

  • Geen, H. and Freeman, R. (1991) J. Magn. Reson., 93, 93–141.

    Google Scholar 

  • Griesinger, C., Sorensen, O.W. and Ernst, R.R. (1987) J. Magn. Reson., 75, 474–492.

    Google Scholar 

  • Güntert, P., Dotsch, V., Wider, G. and Wüthrich, K. (1992) J. Biomol. NMR, 2, 619–629.

    Google Scholar 

  • Karplus, M. (1959) J. Chem. Phys., 30, 11–15.

    Google Scholar 

  • Kloiber, K. and Konrat, R. (2000a) J. Biomol. NMR, 17, 265–268.

    Google Scholar 

  • Kloiber, K. and Konrat, R. (2000b) J. Am. Chem. Soc., 122, 12033–12034.

    Google Scholar 

  • Kloiber, K., Schuler, W. and Konrat, R. (2002) J. Biomol. NMR, 22, 349–363.

    Google Scholar 

  • Korzhnev, D.M., Billeter, M., Arseniev, A.S. and Orekhov, V.Y. (2001) Prog. Nucl. Magn. Reson. Spectrosc., 38, 197–266.

    Google Scholar 

  • McCoy, M.A. and Mueller, L. (1992) J. Am. Chem. Soc., 114, 2108–2112. 300

    Google Scholar 

  • Oas, T.G., Hartzell, C.J., Dahlquist, F.W. and Drobny, G.P. (1987) J. Am. Chem. Soc., 109, 5962–5966.

    Google Scholar 

  • Pang, Y.X., Wang, L.C., Pellecchia, M., Kurochkin, A.V. and Zuiderweg, E.R.P. (1999) J. Biomol. NMR, 14, 297–306.

    Google Scholar 

  • Pelupessy, P., Chiarparin, E., Ghose, R. and Bodenhausen, G. (1999a) J. Biomol. NMR, 13, 375–380.

    Google Scholar 

  • Pelupessy, P., Chiarparin, E., Ghose, R. and Bodenhausen, G. (1999b) J. Biomol. NMR, 14, 277–280.

    Google Scholar 

  • Pervushin, K. (2000) Quart. Rev. Biophys, 33, 161–197.

    Google Scholar 

  • Pervushin, K., Riek, R., Wider, G. and Wüthrich, K. (1997) Proc. Natl. Acad. Sci. USA, 94, 12366–12371.

    Google Scholar 

  • Pervushin, K., Wider, G. and Wüthrich, K. (1998) J. Biomol. NMR, 12, 345–348.

    Google Scholar 

  • Reif, B., Diener, A., Hennig, M., Maurer, M. and Griesinger, C. (2000) J. Magn. Reson., 143, 45–68.

    Google Scholar 

  • Reif, B., Hennig, M. and Griesinger, C. (1997) Science, 276, 1230–1233.

    Google Scholar 

  • Roberts, J.E., Harbison, G.S., Munowitz, M.G., Herzfeld, J. and Griffin, R.G. (1987) J. Am. Chem. Soc., 109, 4163–4169.

    Google Scholar 

  • Sørensen, O.W., Eich, G.W., Levitt, M.H., Bodenhausen, G. and Ernst, R.R. (1983) Prog. Nucl. Magn. Reson. Spectrosc., 16, 163–192.

    Google Scholar 

  • Sprangers, R., Bottomley, M.J., Linge, J.P., Schultz, J., Nilges, M. and Sattler, M. (2000) J. Biomol. NMR, 16, 47–58.

    Google Scholar 

  • Tjandra, N., Szabo, A. and Bax, A. (1996) J. Am. Chem. Soc., 118, 6986–6991.

    Google Scholar 

  • Vincent, S.J.F., Zwahlen, C., Bolton, P.H., Logan, T.M. and Bodenhausen, G. (1996) J. Am. Chem. Soc., 118, 3531–3532.

    Google Scholar 

  • Vuister, G.W. and Bax, A. (1994) J. Biomol. NMR, 4, 193–200.

    Google Scholar 

  • Wagner, G., Schmieder, P. and Thanabal, V. (1991) J. Magn. Reson., 93, 436–440.

    Google Scholar 

  • Wang, A.C. and Bax, A. (1996) J. Am. Chem. Soc., 118, 2483–2494.

    Google Scholar 

  • Weisemann, R., Ruterjans, H., Schwalbe, H., Schleucher, J., Bermel, W. and Griesinger, C. (1994) J. Biomol. NMR, 4, 231–240.

    Google Scholar 

  • Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.

    Google Scholar 

  • Yang, D.W. and Kay, L.E. (1998) J. Am. Chem. Soc., 120, 9880–9887.

    Google Scholar 

  • Yang, D.W., Gardner, K.H. and Kay, L.E. (1998) J. Biomol. NMR, 11, 213–220.

    Google Scholar 

  • Yang, D.W., Konrat, R. and Kay, L.E. (1997) J. Am. Chem. Soc., 119, 11938–11940.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Pervushin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vögeli, B., Pervushin, K. TROSY experiment for refinement of backbone ψ and φ by simultaneous measurements of cross-correlated relaxation rates and 3,4 J HαHN coupling constants. J Biomol NMR 24, 291–300 (2002). https://doi.org/10.1023/A:1021677216126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021677216126

Navigation