Skip to main content
Log in

The Molecular Origins of Selectivity in Methanol Decomposition on Pd Nanoparticles

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We have combined multi-molecular beam methods and in-situ time-resolved IR reflection absorption spectroscopy (IRAS) to explore the kinetics of methanol decomposition on a supported Pd model catalyst. The well-shaped Pd nanoparticles are prepared under ultra-high vacuum conditions on a well-ordered alumina film and have previously been characterized with respect to size, density, and morphology.

Two competing decomposition pathways are observed: Whereas dehydrogenation to CO represents the dominating reaction channel, C-O bond scission proceeds at much lower rates and leads to the formation of carbon and hydrocarbon species. Using CO as a probe molecule, we show via IRAS spectroscopy that these carbon and hydrocarbon species preferentially block defect sites on the Pd particles such as steps or edges, whereas the (111) facet sites are affected to a lesser extent.

Employing quantitative IR\Sigma AS and steady-state isotope exchange experiments, the reaction rates for both channels are measured as a function of carbon coverage. It is found that with increasing carbon coverage, the rate of carbon formation drops rapidly, whereas the kinetics of dehydrogenation is hardly affected. These results demonstrate that the rate of C-O bond scission is drastically enhanced at the particle steps and edges, whereas for the dehydrogenation pathway this is not the case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V.P. Zhdanov and B. Kasemo, Surf. Sci. Rep. 39 (2000) 25.

    Google Scholar 

  2. C.R. Henry, Surf. Sci. Rep. 31 (1998) 231.

    Google Scholar 

  3. C.R. Henry, C. Chapon, C. Duriez and S. Giorgio, Surf. Sci. 253 (1991) 177.

    Google Scholar 

  4. C.T. Campbell, A.W. Grant, D.E. Starr, S.C. Parker and V.A. Bondzie, Topics Catal. 14 (2001) 43.

    Google Scholar 

  5. V. Nehasil, T. Hrncir, S. Zafeiratos, S. Ladas and V. Matolin, Surf. Sci. 454 (2000) 289.

    Google Scholar 

  6. M. Bäumer and H.-J. Freund, Prog. Surf. Sci. 61 (1999) 127.

    Google Scholar 

  7. T.P. St. Clair and D.W. Goodman, Topics Catal. 13 (2000) 5.

    Google Scholar 

  8. R.M. Jaeger, H. Kuhlenbeck, H.-J. Freund, M. Wuttig, W. Hoffmann, R. Franchy and H. Ibach, Surf. Sci. 259 (1991) 235.

    Google Scholar 

  9. J. Libuda, F. Winkelmann, M. Bäumer, H.-J. Freund, T. Bertrams, H. Neddermeyer and K. Müller, Surf. Sci. 318 (1994) 61.

    Google Scholar 

  10. M. Bäumer, J. Libuda and H.-J. Freund, in: Chemisorption and Reactivity on Supported Clusters and Thin Films, ed. R.M. Lambert and G. Pacchiono (Kluwer, Dordrecht, 1997) p. 61.

    Google Scholar 

  11. K.H. Hansen, T. Worren, S. Stempel, E. Laegsgaard, M. Bäumer, H.-J. Freund, F. Besenbacher and I. Stensgaard, Phys. Rev. Lett. 83 (1999) 4120.

    Google Scholar 

  12. M. Frank and M. Bäumer, Phys. Chem. Chem. Phys. 2 (2000) 3723.

    Google Scholar 

  13. I. Meusel, J. Hoffmann, J. Hartmann, M. Heemeier, M. Bäumer, J. Libuda and H.-J. Freund, Catal. Lett. 71 (2001) 5.

    Google Scholar 

  14. S. Shaikhutdinov, M. Frank, M. Bäumer, S.D. Jackson, R. Oldman, J.C. Hemminger and H.-J. Freund, Catal. Lett. 80 (2002) 115.

    Google Scholar 

  15. S. Shaikhutdinov, M. Heemeier, J. Hoffmann, I. Meusel, B. Richter, M. Bäumer, H. Kuhlenbeck, J. Libuda, H.-J. Freund, R. Oldman, S.D. Jackson, C. Konvicka, M. Schmid and P. Varga, Surf. Sci. 501 (2002) 270.

    Google Scholar 

  16. J. Libuda and H.-J. Freund, J. Phys. Chem. B 106 (2002) 4901.

    Google Scholar 

  17. S. Schauermann, J. Hoffmann, V. Johánek, J. Hartmann and J. Libuda, Phys. Chem. Chem. Phys. 4 (2002) 3909.

    Google Scholar 

  18. J. Hoffmann, S. Schauermann, V. Johánek, J. Hartmann and J. Libuda, J. Catal. (accepted).

  19. M. Mavrikakis and M.A. Barteau, J. Mol. Catal. A 131 (1998) 135.

    Google Scholar 

  20. J.-J. Chen, Z.-C. Jiang, Y. Zhou, B.R. Chakraborty and N. Winograd, Surf. Sci. 328 (1995) 248.

    Google Scholar 

  21. F. Solymosi, A. Berko and Z. Toth, Surf. Sci. 285 (1993) 197.

    Google Scholar 

  22. M. Rebholz, V. Matolin, R. Prins and N. Kruse, Surf. Sci. 251 (1991) 1117.

    Google Scholar 

  23. M. Rebholz and N. Kruse, J. Chem. Phys. 95 (1991) 7745.

    Google Scholar 

  24. A.K. Bhattacharya, M.A. Chesters, M.E. Pemble and N. Sheppard, Surf. Sci. 206 (1988) L845.

    Google Scholar 

  25. K. Christmann and J.E. Demuth, J. Chem. Phys. 76 (1982) 6318.

    Google Scholar 

  26. R.J. Levis, Z.C. Jiang and N. Winograd, J. Am. Chem. Soc. 111 (1989) 4605.

    Google Scholar 

  27. R.J. Levis, Z.C. Jiang and N. Winograd, J. Am. Chem. Soc. 110 (1988) 4431.

    Google Scholar 

  28. N. Kruse, M. Rebholz, V. Matolin, G.K. Chuah and J.H. Block, Surf. Sci. Lett. 238 (1990) L457.

    Google Scholar 

  29. R.P. Holroyd and M. Bowker, Surf. Sci. 377–379 (1997) 786.

    Google Scholar 

  30. S. Schauermann, J. Hoffmann, V. Johánek, J. Hartmann, J. Libuda and H.-J. Freund, Angew. Chem. Int. Ed. 41 (2002) 2513.

    Google Scholar 

  31. J. Libuda, I. Meusel, J. Hartmann and H.-J. Freund, Rev. Sci. Instrum. 71 (2000) 4395.

    Google Scholar 

  32. R.M. Jaeger, J. Libuda, M. Bäumer, K. Homann, H. Kulenbeck and H.-J. Freund, J. Electron Spectrosc. Relat. Phenom. 64/65 (1993) 217.

    Google Scholar 

  33. J. Hoffmann, S. Schauermann, J. Hartmann, V.P. Zhdanov, B. Kasemo, J. Libuda and H.-J. Freund, Chem. Phys. Lett. 354 (2002) 403.

    Google Scholar 

  34. A. Sandell, J. Libuda, P.A. Brühwiler, S. Andersson, M. Bäumer, A.J. Maxwell, N. Mårtensson and H.-J. Freund, Phys. Rev. B 55 (1997) 7233.

    Google Scholar 

  35. A. Sandell, A. Beutler, R. Nyholm, J.N. Andersson, P.A. Brühwiler, N. Martensson, J. Libuda, K. Wolter, O. Seiferth, M. Bäumer, H. Kuhlenbeck and H.-J. Freund, Phys. Rev. B 57 (1998) 13199.

    Google Scholar 

  36. K. Wolter, O. Seiferth, H. Kuhlenbeck, M. Bäumer and H.-J. Freund, Surf. Sci. 399 (1998) 190.

    Google Scholar 

  37. K. Wolter, PhD Thesis, Berlin, 2001.

  38. J. Raskó, J. Bontovics and F. Solymosi, J. Catal. 143 (1993) 138.

    Google Scholar 

  39. V. Matolin, M. Rebholz and N. Kruse, Surf. Sci. 245 (1991) 233.

    Google Scholar 

  40. J. Libuda, I. Meusel, J. Hoffmann, J. Hartmann, L. Piccolo, C.R. Henry and H.-J. Freund, J. Chem. Phys. 114 (2001) 4669.

    Google Scholar 

  41. F.M. Hoffmann, Surf. Sci. Rep. 3 (1983) 107.

    Google Scholar 

  42. I.V. Yudanov, R. Sahnoun, K.M. Neyman and N. Rösch (in preparation).

  43. P. Hollins, Surf. Sci. Rep. 16 (1992) 51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schauermann, S., Hoffmann, J., Johánek, V. et al. The Molecular Origins of Selectivity in Methanol Decomposition on Pd Nanoparticles. Catalysis Letters 84, 209–217 (2002). https://doi.org/10.1023/A:1021484121334

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021484121334

Navigation