Berté, A. (Réd.): 1987, *Enseignement des mathématiques utilisant la ‘réalité'*, Tome 1, IREM, Bordeaux.

Berté, A.: 1993, *Mathématique dynamique*, Nathan, Paris.

Brousseau, G.: 1984, ‘The crucial role of the didactical contract in the analysis and construction of situations in teaching and learning mathematics’, in: H.G. Steiner (ed.), *Theory of Mathematics Education*, Occasional Paper 54, Institut für Didaktik der Mathematik, Bielefeld, Germany, pp. 110–119.

Burkhardt, H.: 1994, ‘Mathematical applications in school curriculum’, in T. Husen and T.N. Postlethwaite (eds.), *The International Encyclopedia of Education*, Pergamon Press, Oxford/New York, pp. 3631–3634.

Collins, A., Brown, J.S. and Newman, S.E.: 1989, ‘Cognitive apprenticeship: Teaching the crafts of reading, writing, and mathematics’, in L.B. Resnick (ed.), *Knowing, Learning, and Instruction. Essays in Honor of Robert Glaser*, Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 453–494.

De Bock, D., Van Dooren, W., Verschaffel, L. and Janssens, D.: 2001, ‘Secondary school pupils’ improper proportional reasoning: An in-depth study of the nature and persistence of pupils’ errors’, *Proceedings of the 25th International Conference of the International Group for the Psychology of Mathematics Education*, Vol. 2, Utrecht, The Netherlands, pp. 313–320.

De Bock, D., Verschaffel, L. and Janssens, D.: 1998, ‘The predominance of the linear model in secondary school students’ solutions of word problems involving length and area of similar plane figures’,

*Educational Studies in Mathematics* 35, 65–83.

CrossRefDe Bock, D., Verschaffel, L. and Janssens, D.: 1999, ‘Some reflections on the illusion of linearity’, *Proceedings of the 3rd European Summer University on History and Epistemology in Mathematical Education*, Vol. 1, Leuven/Louvain-la-Neuve, Belgium, pp. 153–167.

De Bock, D., Verschaffel, L. and Janssens, D.: 2002, ‘The effects of different problem presentations and formulations on the illusion of linearity in secondary school students’,

*Mathematical Thinking and Learning* 4(1), 65–89.

CrossRefde Lange, J.: 1987, *Mathematics, insight and meaning*, OW&OC, Utrecht.

Fischbein, E.: 1987, *Intuition in Science and Mathematics*, D. Reidel, Dordrecht.

Forman, E.A. and Cazden, C.B.: 1985, ‘Exploring Vygotskian perspectives in education. The cognitive value of peer interaction’, in J.V. Wertsch (ed.), *Culture, Communication, and Cognition: Vygotskian Perspectives*, Cambridge University Press, New York, pp. 323–347.

Freudenthal, H.: 1973, *Mathematics as an Educational Task*, D. Reidel, Dordrecht.

Freudenthal, H.: 1983, *Didactical Phenomenology of Mathematical Structures*, D. Reidel, Dordrecht.

Gagatsis, A.: 1998, ‘Solving methods in problems of proportion by Greek students in secondary education, ages 13-16’, *Scientia Paedagogica Experimentalis* 35(1), 241–262.

Gagatsis, A. and Kyriakides, L.: 2000, ‘Teachers’ attitudes towards their pupils’ mathematical errors’,

*Educational Research and Evaluation* 6(1), 24–58.

CrossRefGinsburg, H.P., Kossan, N.E., Schwartz, R. and Swanson, D.: 1982, ‘Protocol methods in research on mathematical thinking’, in H.P. Ginsburg (ed.), *The Development of Mathematical Thinking*, Academic Press, New York, pp. 7–47.

Gravemeijer, K.: 1994, *Developing Realistic Mathematics Education*, Freudenthal Institute, Utrecht.

Greer, B.: 1993, ‘The mathematical modelling perspective on wor(l)d problems’, *Journal of Mathematical Behaviour* 12, 239–250.

Greer, B.: 1997, ‘Modelling reality in mathematics classroom: The case of word problems’,

*Learning and Instruction* 7(4), 293–307.

CrossRefLarkin, J.H. and Simon, H.A.: 1987, ‘Why a diagram is (sometimes) worth ten thousand words’,

*Cognitive Science* 12, 101–138.

CrossRefLeinhardt, G., Zaslavsky, O. and Stein, M.K.: 1990, ‘Functions, graphs, and graphing: Tasks, learning, and teaching’,

*Review of Educational Research* 60(1), 1–64.

CrossRefLimón, M.: 2001, ‘On the cognitive conflict as an instructional strategy for conceptual change: A critical appraisal’,

*Learning and Instruction* 11(4-5), 357–380.

CrossRefMarkovits, Z., Eylon, B.-S. and Bruckheimer, M.: 1986, ‘Functions today and yesterday’, *For the Learning of Mathematics* 6(2), 18–24, 28.

Matz, M.: 1982, ‘Towards a process model for high school algebra errors’, in D. Sleeman and J.S. Brown (eds.), *Intelligent Tutoring Systems*, Academic Press, London, pp. 25–50.

National Council of Teachers of Mathematics: 1994, *Curriculum and Evaluation Standards for School Mathematics*, Author, Reston, VA.

Nesher, P.: 1996, ‘School stereotype word problems and the open nature of applications’, *Selected Lectures from the 8th International Congress on Mathematical Education*, Sevilla, Spain, pp. 335–343.

Outhred, L.N. and Mitchelmore, M.C.: 2000, ‘Young children's intuitive understanding of rectangular area measurement’,

*Journal for Research in Mathematics Education* 31(2), 144–167.

CrossRefRouche, N.: 1989, ‘Prouver: Amener à l'évidence ou contrôler des implications?’, *Actes du 7ème Colloque inter-IREM Epistémologie et Histoire des Mathématiques*, Besançon, France, pp. 8–38.

Simon, M.A. and Blume, G.W.: 1994, ‘Building and understanding multiplicative relationships: A study of prospective elementary teachers’,

*Journal for Research in Mathematics Education* 25(5), 472–494.

CrossRefStreefland, L.: 1984, ‘Search for the roots of ratio: Some thoughts on the long term learning process (Towards

*...* a theory). Part I: Reflections on a teaching experiment’,

*Educational Studies in Mathematics* 15, 327–348.

CrossRefTierney, C., Boyd, C. and Davis, G.: 1990, ‘Prospective primary teachers’ conceptions of area’, *Proceedings of the 14th International Conference of the International Group for the Psychology of Mathematics Education*, Vol. 2, Oaxtepex, Mexico, pp. 307–314.

Tirosh, D. and Stavy, R.: 1999a, ‘Intuitive rules: A way to explain and predict students’ reasoning’,

*Educational Studies in Mathematics* 38, 51–66.

CrossRefTirosh, D. and Stavy, R.: 1999b, ‘Intuitive rules and comparison tasks’,

*Mathematical Thinking and Learning* 1(3), 179–194.

CrossRefTreffers, A.: 1987, *Three dimensions. A model of Goal and Theory Description in Mathematics Instruction. The Wiskobas Project*, D. Reidel, Dordrecht.

Van Dooren, W., De Bock, D., Hessels, A., Janssens, D. and Verschaffel, L.: 2002, ‘Remedying secondary school students’ illusion of linearity: A developmental research’, *Proceedings of the 26th International Conference of the International Group for the Psychology of Mathematics Education*, Vol. 1, Norwich, UK, p. 370.

Verschaffel, L., De Corte, E. and Lasure, S.: 1994, ‘Realistic considerations in mathematical modelling of school arithmetic word problems’,

*Learning and Instruction* 4, 273–294.

CrossRefVerschaffel, L., De Corte, E. and Vierstraete, H.: 1997, ‘Teaching realistic mathematical modelling in the elementary school: A teaching experiment with fifth graders’,

*Journal for Research in Mathematics Education* 28(5), 577–601.

CrossRefVerschaffel, L., Greer, B. and De Corte, E.: 2000, *Making Sense of Word Problems*, Swets and Zeitlinger, Lisse, The Netherlands.

Wertheimer, M.: 1945, *Productive Thinking*, Harper and Brothers, New York.

Wyndhamn, J. and Säljö, R.: 1997, ‘Word problems and mathematical reasoning: A study of children's mastery of reference and meaning in textual realities’,

*Learning and Instruction* 7(4), 361–382.

CrossRef