Two Different Rapid Decorrelation in Time Limits for Turbulent Diffusion
 Peter R. Kramer
 … show all 1 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
A turbulent diffusion model in which the velocity field is Gaussian and rapidly decorrelating in time (GRDT) has been widely used recently in an endeavor to understand the emergence of anomalous scaling behavior of physical fields in fluid mechanics from the underlying stochastic partial differential equations. The utility of the GRDT model is the fact that correlation functions of the passive scalar field solve closed partial differential equations; the usual moment closure obstacle is averted. We study here the sense in which the GRDT model describes turbulent diffusion by a general, nonGaussian velocity field with nontrivial temporal structure in the limit in which the correlation time of the velocity field is taken to zero. When the velocity field is rescaled in a particular manner in this rapid decorrelation limit, then a limit theorem of Khas'minskii indeed shows that the passive scalar statistics are described asymptotically by the GRDT Model for a broad class of velocity field models. We provide, however, an explicit example of a “Poisson blob model” velocity field which has two different welldefined rapid decorrelation in time limits. In one, the passive scalar correlation functions converge to those of the GRDT Model, and in the other, they converge to a distinct nontrivial limit in which the correlation functions do not solve closed PDE's. We provide both mathematical and heuristic explanations for the differences between these two limits. The conclusion is that the GRDT Model provides a universal description of the rapid decorrelation in time limit of general nonGaussian velocity field models only when the velocity field is rescaled in a particular manner during the limit process.
 M. Lesieur, Turbulence in Fluids, Chap. 7, pp. 161163, No. 1 in Fluid Mechanics and Its Applications (Kluwer, Dordrecht, (1990), 2nd revised edn.
 W. D. McComb, The physics of fluid turbulence, Oxford Engineering Science Series, Vol. 25, Chap. 2.2.1 (Clarendon Press, New York, 1991).
 R. A. Antonia and B. R. Pearson, Scaling exponents for turbulent velocity and temperature increments, Europhys. Lett. 40(2):123128 (1997).
 S. Grossman, D. Lohse, and A. Reeh, Different intermittency for longitudinal and transversal turbulent fluctuations, Phys. Fluids 9(12):38173825 (1997).
 K. R. Sreenivasan and R. A. Antonia, The phenomenology of smallscale turbulence, in Annual review of fluid mechanics, Vol. 29, Vol. 29 of Annu. Rev. Fluid Mech., pp. 435472 (Annual Reviews, Palo Alto, California, 1997).
 R. H. Kraichnan, Smallscale structure of a scalar field convected by turbulence, Phys. Fluids 11(5):945953 (1968).
 A. P. Kazantsev, Enhancement of a magnetic field by a conducting fluid, Sov. Phys. JETP 26:1031(1968).
 S. A. Molchanov, Ideas in the theory of random media, Acta Applicandae Math. 22:139282 (1991).
 S. A. Molchanov, A. A. Ruzmaikin, and D. D. Sokoloff, Dynamo equations in a random shortterm correlated velocity field, Magnitnaja Gidrodinamika 4:6773 (1983) [in Russian].
 A. J. Majda, Explicit inertial range renormalization theory in a model for turbulent diffusion, J. Statist. Phys. 73:515542 (1993).
 R. H. Kraichnan, Anomalous scaling of a randomly advected passive scalar, Phys. Rev. Lett. 72(7):10161019 (1994).
 D. Bernard, K. Gawęedzki, and A. Kupiainen, Slow modes in passive advection, J. Statist. Phys. 90(3/4):519569 (1998).
 M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, Normal and anomalous scaling of the fourthorder correlation function of a randomly advected passive scalar, Phys. Rev. E 52(5):49244941 (1995).
 A. L. Fairhall, B. Galanti, V. S. L'vov, and I. Procaccia, Direct numerical simulations of the Kraichnan model: Scaling exponents and fusion rules, Phys. Rev. Lett. 79(21)
 U. Frisch, A. Mazzino, and M. Vergassola, Intermittency in passive scalar advection, Phys. Rev. Lett. 80 (25): 5532535 (1998).
 O. Gat and R. Zeitak, Multiscaling in passive scalar advection as stochastic shape dynamics, Phys. Rev. E 57(5):55115519 (1998).
 A. J. Majda and P. R. Kramer, Simplified models for turbulent diffusion: Theory, numerical modelling and physical phenomena, Phys. Rep. 314(45):237574 (1999).
 J. C. Bronski and R. M. McLaughlin, Scalar intermittency and the ground state of periodic Schrödinger equations, Phys. Fluids 9 (1):181190 (1997).
 J. C. Bronski and R. M. McLaughlin, The problem of moments and the Majda model for scalar intermittency, Phys. Lett. A 265:257263 (2000).
 M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, Statistics of a passive scalar advected by a largescale twodimensional velocity field: Analytic solution, Phys. Rev. E 51 (6):56095627 (1995).
 A. J. Majda, The random uniform shear layer: An explicit example of turbulent diffusion with broad tail probability distributions, Phys. Fluids A 5(8):19631970 (1993).
 R. M. McLaughlin and A. J. Majda, An explicit example with nonGaussian probability distribution for nontrivial scalar mean and fluctuation, Phys. Fluids 8(2):536(1996).
 B. I. Shraiman and E. D. Siggia, Lagrangian path integrals and fluctuations in random flow, Phys. Rev. E 49(4):29122927 (1994).
 V. I. Klyatskin, W. A. Woyczynski, and D. Gurarie, Shorttime correlation approximations for diffusing tracers in random velocity fields: A functional approach, in Stochastic Modelling in Physical Oceanography, Vol. 39 of Progr. Probab., pp. 221269 (Birkhäuser Boston, Boston, 1996).
 A. I. Saichev and W. A. Woyczynski, Probability distributions of passive tracers in randomly moving media, in Stochastic models in geosystems, S. A. Molchanov, ed., IMA Volumes in Mathematics and Its Applications (SpringerVerlag, Berlin, 1996).
 L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil'ev, Renormalization group, operator product expansion, and anomalous scaling in a model of advected passive scalar, Phys. Rev. E (3) 58(2, part A):18231835 (1998).
 A. L. Fairhall, O. Gat, V. L'vov, and I. Procaccia, Anomalous scaling in a model of passive scalar advection: Exact results, Phys. Rev. E 53(4A):35183535 (1996).
 K. Gawęedzki and A. Kupiainen, Universality in turbulence: An exactly solvable model, in LowDimensional Models in Statistical Physics and Quantum Field Theory (Schladming, 1995), Lecture Notes in Phys., Vol. 469, pp. 71105 (Springer, Berlin, 1996).
 T. C. Lipscombe, A. L. Frenkel, and D. ter Haar, On the convection of a passive scalar by a turbulent Gaussian velocity field, J. Statist. Phys. 63(1/2):305313 (1991).
 H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge Studies in Advanced Mathematics, No. 24 (Cambridge University Press, Cambridge, United Kingdom, 1990).
 P. R. Kramer, Passive Scalar Scaling Regimes in a Rapidly Decorrelating Turbulent Flow, Ph.D. thesis (Princeton University, 1997).
 C. L. Zirbel and E. ÇCinlar, Mass transport by Brownian flows, in Stochastic Models in Geosystems, S. A. Molchanov, ed., IMA Volumes in Mathematics and Its Applications (SpringerVerlag, Berlin, 1996).
 A. J. Majda, Random shearing direction models for isotropic turbulent diffusion, J. Statist. Phys. 25(5/6):11531165 (1994).
 M. Avellaneda and A. J. Majda, Mathematical models with exact renormalization for turbulent transport, II: Fractal interfaces, nonGaussian statistics and the sweeping effect, Comm. Pure Appl. Math. 146:139204 (1992).
 M. Avellaneda and A. J. Majda, Mathematical models with exact renormalization for turbulent transport, Comm. Pure Appl. Math. 131:381429 (1990).
 L. Ts. Adzhemyan and N. V. Antonov, Renormalization group and anomalous scaling in a simple model of passive scalar advection in compressible flow, Phys. Rev. E (3) 58 (6, part A):73817396 (1998).
 D. Bernard, K. Gawęedzki, and A. Kupiainen, Anomalous scaling in the Npoint functions of passive scalar, Phys. Rev. E 54(3):25642572 (1996).
 M. Chertkov and G. Falkovich, Anomalous scaling exponents of a whiteadvected passive scalar, Phys. Rev. Lett. 76(15):27062709 (1996).
 U. Frisch, A. Mazzino, A. Noullez, and M. Vergassola, Lagrangian method for multiple correlations in passive scalar advection, Phys. Fluids 11(8): 21782186 (1999), The International Conference on Turbulence (Los Alamos, New Mexico, 1998).
 K. Gawęedzki and M. Vergassola, Phase transition in the passive scalar advection, Phys. D 138(1/2):6390 (2000).
 A. Pumir, B. I. Shraiman, and E. D. Siggia, Perturbation theory for the δ‐correlated model of passive scalar advection near the Batchelor limit, Phys. Rev. E 55(2):R1263R1266 (1997).
 A. C. Fannjiang, Phase diagram for turbulent transport: Sampling drift, eddy diffusivity and variational principles, Phys. D 136(1/2):145174 (2000).
 H. Kesten and G. C. Papanicolaou, A limit theorem for turbulent diffusion, Comm. Math. Phys. 65(2):97128 (1979).
 I. A. Ibragimov and Yu. V. Linnik, Independent and Stationary Sequences of Random Variables, Chap. 17 (WoltersNoordhoff Publishing, Groningen, The Netherlands, 1971).
 I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Section 1.1, 2nd edn. (SpringerVerlag, New York, 1991).
 T. Fujiwara and H. Kunita, Limit theorems for stochastic differencedifferential equations, Nagoya Math. J. 127:83116 (1992).
 R. Z. Khas'minskii, On stochastic processes defined by differential equations with a small parameter, Theor. Probability Appl. 11(2):211228 (1966).
 B. Øksendal, Stochastic Differential Equations, Universitext (SpringerVerlag, Berlin, 1998), fifth edn., An introduction with applications.
 S. A. Molchanov and L. I. Piterbarg, Averaging in turbulent diffusion problems, in Probability Theory and Random Processes, pp. 3547 (Kijev, Naukova Dumka, 1987) [in Russian].
 R. A. Carmona and J. P. Fouque, Diffusionapproximation for the advectiondiffusion of a passive scalar by a spacetime Gaussian velocity field, in Seminar on stochastic analysis, random fields and applications, E. Bolthausen, M. Dozzi, and F. Russo, eds., Progress in Probability, Vol. 36, pp. 3749 (Basel, 1995) (Centro Stefano Franscini, Birkhäuser Verlag).
 S. Karlin and H. M. Taylor, A Second Course in Stochastic Processes, Section 16.1 (Academic Press, Boston, 1981).
 A. M. Yaglom, Correlation Theory of Stationary and Related Random Functions. Volume I: Basic Results (SpringerVerlag, Berlin, 1987).
 P. Billingsley, Probability and Measure, 3rd edn. (Wiley, New York/London/Sydney, 1995).
 A. Friedman, Partial Differential Equations of Parabolic Type, Chapter 1 (Prentice–Hall, Englewood Cliffs, New Jersey, 1964).
 O. A. Ladyžzhenskaja, V. A. Solonnikov, and N. N. Ural'ceva, Linear and QuasiLinear Equations of Parabolic Type, Vol. 23 of Translations of Mathematical Monographs, Chap. IV (American Mathematical Society, Providence, Rhode Iland, 1968).
 A. Friedman, Stochastic Differential Equations and Applications, Vol. 2 (Academic Press, New York, 1976).
 M. Chertkov, Instanton for random advection, Phys. Rev. E 55(3):27222735 (1997).
 E. M. Stein, Harmonic Analysis—RealVariable Methods, Orthogonality, and Oscillatory Integrals, Chap. 6 (Princeton University Press, 1993).
 D. W. Stroock, Probability Theory, an Analytic View (Cambridge University Press, Cambridge, United Kingdom, 1993).
 P. Billingsley, Convergence of Probability Measures (Wiley, New York/London/Sydney, 1968).
 H. L. Royden, Real Analysis, 3rd edn. (MacMillan, New York, 1988).
 I. M. Gel'fand and N. Ya. Vilenkin, Generalized Functions. Applications of Harmonic Analysis, Vol. 4 (Academic Press, New York, 1964).
 A. Friedman, Stochastic Differential Equations and Applications, Vol. 1 (Academic Press, New York, 1975).
 Title
 Two Different Rapid Decorrelation in Time Limits for Turbulent Diffusion
 Journal

Journal of Statistical Physics
Volume 110, Issue 12 , pp 87136
 Cover Date
 20030101
 DOI
 10.1023/A:1021066611474
 Print ISSN
 00224715
 Online ISSN
 15729613
 Publisher
 Kluwer Academic PublishersPlenum Publishers
 Additional Links
 Topics
 Keywords

 turbulent diffusion
 Kraichnan model
 Poisson process
 convergence of probability measures
 Levy–Khinchine theorem
 Feynman–Kac formula
 Industry Sectors
 Authors

 Peter R. Kramer ^{(1)}
 Author Affiliations

 1. Department of Mathematical Sciences, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180