1.

M. Lesieur, *Turbulence in Fluids*, Chap. 7, pp. 161-163, No. 1 in *Fluid Mechanics and Its Applications* (Kluwer, Dordrecht, (1990), 2nd revised edn.

2.

W. D. McComb, The physics of fluid turbulence, *Oxford Engineering Science Series*, Vol. **25**, Chap. 2.2.1 (Clarendon Press, New York, 1991).

3.

R. A. Antonia and B. R. Pearson, Scaling exponents for turbulent velocity and temperature increments, *Europhys. Lett.*
**40**(2):123-128 (1997).

4.

S. Grossman, D. Lohse, and A. Reeh, Different intermittency for longitudinal and transversal turbulent fluctuations, *Phys. Fluids*
**9**(12):3817-3825 (1997).

5.

K. R. Sreenivasan and R. A. Antonia, The phenomenology of small-scale turbulence, in *Annual review of fluid mechanics, Vol. 29*, Vol. **29** of Annu. Rev. Fluid Mech., pp. 435-472 (Annual Reviews, Palo Alto, California, 1997).

6.

R. H. Kraichnan, Small-scale structure of a scalar field convected by turbulence, *Phys. Fluids*
**11**(5):945-953 (1968).

7.

A. P. Kazantsev, Enhancement of a magnetic field by a conducting fluid, *Sov. Phys. JETP*
**26**:1031(1968).

8.

S. A. Molchanov, Ideas in the theory of random media, *Acta Applicandae Math.*
**22**:139-282 (1991).

9.

S. A. Molchanov, A. A. Ruzmaikin, and D. D. Sokoloff, Dynamo equations in a random short-term correlated velocity field, *Magnitnaja Gidrodinamika*
**4**:67-73 (1983) [in Russian].

10.

A. J. Majda, Explicit inertial range renormalization theory in a model for turbulent diffusion, *J. Statist. Phys.*
**73**:515-542 (1993).

11.

R. H. Kraichnan, Anomalous scaling of a randomly advected passive scalar, *Phys. Rev. Lett.*
**72**(7):1016-1019 (1994).

12.

D. Bernard, K. Gawęedzki, and A. Kupiainen, Slow modes in passive advection, *J. Statist. Phys.*
**90**(3/4):519-569 (1998).

13.

M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, Normal and anomalous scaling of the fourth-order correlation function of a randomly advected passive scalar, *Phys. Rev. E*
**52**(5):4924-4941 (1995).

14.

A. L. Fairhall, B. Galanti, V. S. L'vov, and I. Procaccia, Direct numerical simulations of the Kraichnan model: Scaling exponents and fusion rules, *Phys. Rev. Lett.*
**79**(21)

15.

U. Frisch, A. Mazzino, and M. Vergassola, Intermittency in passive scalar advection, *Phys. Rev. Lett.*
**80** (25): 5532-535 (1998).

16.

O. Gat and R. Zeitak, Multiscaling in passive scalar advection as stochastic shape dynamics, *Phys. Rev. E*
**57**(5):5511-5519 (1998).

17.

A. J. Majda and P. R. Kramer, Simplified models for turbulent diffusion: Theory, numerical modelling and physical phenomena, *Phys. Rep.*
**314**(4-5):237-574 (1999).

18.

J. C. Bronski and R. M. McLaughlin, Scalar intermittency and the ground state of periodic Schrödinger equations, *Phys. Fluids*
**9** (1):181-190 (1997).

19.

J. C. Bronski and R. M. McLaughlin, The problem of moments and the Majda model for scalar intermittency, *Phys. Lett. A*
**265**:257-263 (2000).

20.

M. Chertkov, G. Falkovich, I. Kolokolov, and V. Lebedev, Statistics of a passive scalar advected by a large-scale two-dimensional velocity field: Analytic solution, *Phys. Rev. E*
**51** (6):5609-5627 (1995).

21.

A. J. Majda, The random uniform shear layer: An explicit example of turbulent diffusion with broad tail probability distributions, *Phys. Fluids A*
**5**(8):1963-1970 (1993).

22.

R. M. McLaughlin and A. J. Majda, An explicit example with non-Gaussian probability distribution for nontrivial scalar mean and fluctuation, *Phys. Fluids*
**8**(2):536(1996).

23.

B. I. Shraiman and E. D. Siggia, Lagrangian path integrals and fluctuations in random flow, *Phys. Rev. E*
**49**(4):2912-2927 (1994).

24.

V. I. Klyatskin, W. A. Woyczynski, and D. Gurarie, Short-time correlation approximations for diffusing tracers in random velocity fields: A functional approach, in *Stochastic Modelling in Physical Oceanography*, Vol. **39** of Progr. Probab., pp. 221-269 (Birkhäuser Boston, Boston, 1996).

25.

A. I. Saichev and W. A. Woyczynski, Probability distributions of passive tracers in randomly moving media, in *Stochastic models in geosystems*, S. A. Molchanov, ed., IMA Volumes in Mathematics and Its Applications (Springer-Verlag, Berlin, 1996).

26.

L. Ts. Adzhemyan, N. V. Antonov, and A. N. Vasil'ev, Renormalization group, operator product expansion, and anomalous scaling in a model of advected passive scalar, *Phys. Rev. E (3)*
**58**(2, part A):1823-1835 (1998).

27.

A. L. Fairhall, O. Gat, V. L'vov, and I. Procaccia, Anomalous scaling in a model of passive scalar advection: Exact results, *Phys. Rev. E*
**53**(4A):3518-3535 (1996).

28.

K. Gawęedzki and A. Kupiainen, Universality in turbulence: An exactly solvable model, in *Low-Dimensional Models in Statistical Physics and Quantum Field Theory (Schladming, 1995)*, Lecture Notes in Phys., Vol. **469**, pp. 71-105 (Springer, Berlin, 1996).

29.

T. C. Lipscombe, A. L. Frenkel, and D. ter Haar, On the convection of a passive scalar by a turbulent Gaussian velocity field, *J. Statist. Phys.*
**63**(1/2):305-313 (1991).

30.

H. Kunita, *Stochastic Flows and Stochastic Differential Equations*, Cambridge Studies in Advanced Mathematics, No. 24 (Cambridge University Press, Cambridge, United Kingdom, 1990).

31.

P. R. Kramer, *Passive Scalar Scaling Regimes in a Rapidly Decorrelating Turbulent Flow*, Ph.D. thesis (Princeton University, 1997).

32.

C. L. Zirbel and E. ÇCinlar, Mass transport by Brownian flows, in *Stochastic Models in Geosystems*, S. A. Molchanov, ed., IMA Volumes in Mathematics and Its Applications (Springer-Verlag, Berlin, 1996).

33.

A. J. Majda, Random shearing direction models for isotropic turbulent diffusion, *J. Statist. Phys.*
**25**(5/6):1153-1165 (1994).

34.

M. Avellaneda and A. J. Majda, Mathematical models with exact renormalization for turbulent transport, II: Fractal interfaces, non-Gaussian statistics and the sweeping effect, *Comm. Pure Appl. Math.*
**146**:139-204 (1992).

35.

M. Avellaneda and A. J. Majda, Mathematical models with exact renormalization for turbulent transport, *Comm. Pure Appl. Math.*
**131**:381-429 (1990).

36.

L. Ts. Adzhemyan and N. V. Antonov, Renormalization group and anomalous scaling in a simple model of passive scalar advection in compressible flow, *Phys. Rev. E (3)*
**58** (6, part A):7381-7396 (1998).

37.

D. Bernard, K. Gawęedzki, and A. Kupiainen, Anomalous scaling in the N-point functions of passive scalar, *Phys. Rev. E*
**54**(3):2564-2572 (1996).

38.

M. Chertkov and G. Falkovich, Anomalous scaling exponents of a white-advected passive scalar, *Phys. Rev. Lett.*
**76**(15):2706-2709 (1996).

39.

U. Frisch, A. Mazzino, A. Noullez, and M. Vergassola, Lagrangian method for multiple correlations in passive scalar advection, *Phys. Fluids*
**11**(8): 2178-2186 (1999), The International Conference on Turbulence (Los Alamos, New Mexico, 1998).

40.

K. Gawęedzki and M. Vergassola, Phase transition in the passive scalar advection, *Phys. D*
**138**(1/2):63-90 (2000).

41.

A. Pumir, B. I. Shraiman, and E. D. Siggia, Perturbation theory for the δ‐correlated model of passive scalar advection near the Batchelor limit, *Phys. Rev. E*
**55**(2):R1263-R1266 (1997).

42.

A. C. Fannjiang, Phase diagram for turbulent transport: Sampling drift, eddy diffusivity and variational principles, *Phys. D*
**136**(1/2):145-174 (2000).

43.

H. Kesten and G. C. Papanicolaou, A limit theorem for turbulent diffusion, *Comm. Math. Phys.*
**65**(2):97-128 (1979).

44.

I. A. Ibragimov and Yu. V. Linnik, *Independent and Stationary Sequences of Random Variables*, Chap. 17 (Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1971).

45.

I. Karatzas and S. E. Shreve, *Brownian Motion and Stochastic Calculus*, Section 1.1, 2nd edn. (Springer-Verlag, New York, 1991).

46.

T. Fujiwara and H. Kunita, Limit theorems for stochastic difference-differential equations, *Nagoya Math. J.*
**127**:83-116 (1992).

47.

R. Z. Khas'minskii, On stochastic processes defined by differential equations with a small parameter, *Theor. Probability Appl.*
**11**(2):211-228 (1966).

48.

B. Øksendal, *Stochastic Differential Equations*, Universitext (Springer-Verlag, Berlin, 1998), fifth edn., An introduction with applications.

49.

S. A. Molchanov and L. I. Piterbarg, Averaging in turbulent diffusion problems, in *Probability Theory and Random Processes*, pp. 35-47 (Kijev, Naukova Dumka, 1987) [in Russian].

50.

R. A. Carmona and J. P. Fouque, Diffusion-approximation for the advection-diffusion of a passive scalar by a space-time Gaussian velocity field, in *Seminar on stochastic analysis, random fields and applications*, E. Bolthausen, M. Dozzi, and F. Russo, eds., Progress in Probability, Vol. **36**, pp. 37-49 (Basel, 1995) (Centro Stefano Franscini, Birkhäuser Verlag).

51.

S. Karlin and H. M. Taylor, *A Second Course in Stochastic Processes*, Section 16.1 (Academic Press, Boston, 1981).

52.

A. M. Yaglom, *Correlation Theory of Stationary and Related Random Functions. Volume I: Basic Results* (Springer-Verlag, Berlin, 1987).

53.

P. Billingsley, *Probability and Measure*, 3rd edn. (Wiley, New York/London/Sydney, 1995).

54.

A. Friedman, *Partial Differential Equations of Parabolic Type*, Chapter 1 (Prentice–Hall, Englewood Cliffs, New Jersey, 1964).

55.

O. A. Ladyžzhenskaja, V. A. Solonnikov, and N. N. Ural'ceva, *Linear and Quasi-Linear Equations of Parabolic Type*, Vol. **23** of Translations of Mathematical Monographs, Chap. IV (American Mathematical Society, Providence, Rhode Iland, 1968).

56.

A. Friedman, *Stochastic Differential Equations and Applications*, Vol. **2** (Academic Press, New York, 1976).

57.

M. Chertkov, Instanton for random advection, *Phys. Rev. E*
**55**(3):2722-2735 (1997).

58.

E. M. Stein, *Harmonic Analysis—Real-Variable Methods, Orthogonality, and Oscillatory Integrals*, Chap. 6 (Princeton University Press, 1993).

59.

D. W. Stroock, *Probability Theory, an Analytic View* (Cambridge University Press, Cambridge, United Kingdom, 1993).

60.

P. Billingsley, *Convergence of Probability Measures* (Wiley, New York/London/Sydney, 1968).

61.

H. L. Royden, *Real Analysis*, 3rd edn. (MacMillan, New York, 1988).

62.

I. M. Gel'fand and N. Ya. Vilenkin, *Generalized Functions. Applications of Harmonic Analysis*, Vol. **4** (Academic Press, New York, 1964).

63.

A. Friedman, *Stochastic Differential Equations and Applications*, Vol. **1** (Academic Press, New York, 1975).