Alexandrov, P. S. (1956). *Combinatorial Topology*, *Vol. 1*, Greylock, Rochester, New York.

Alexandrov, P. S. (1961). *Elementary Concepts of Topology*, Dover Publications, New York.

Bekenstein, J. D. (1973). Black holes and entropy. *Physical Review D*
**7**, 2333.

Böhm, A. (1979). *Quantum Mechanics*, Springer-Verlag, Berlin.

Bombelli, L., Lee, J., Meyer, D., and Sorkin, R. D. (1987). Space-time as a causal set. *Physical Review Letters*
**59**, 521.

Bott, R. and Tu, L. W. *Differential Forms in Algebraic Topology*, (1981).Springer, Berlin, Graduate Text in Mathematics, Vol. 82.

Bourbaki, N. (1967). *Elements of Mathematics: General Topology 4th edn.*, *Vol. 3*(Translated from French), Addison-Wesley, Reading, MA.

Breslav, R. B., and Zapatrin, R. R. (2000). Differential structure of Greechie logics. *International Journal of Theoretical Physics*
**39**, 1027. quant-ph/9903011.

Breslav, R. B., Parfionov, G. N., and Zapatrin, R. R. (1999). *Topology measurement within the histories approach*, *Hadronic Journal*
**22**, 225. quant-ph/9903011.

Butterfield, J. and Isham, C. J. (1998).Atopos perspective on theKochen–Specker the-orem: I. Quantum states as generalized valuations, *International Journal of The-oretical Physics*
**37**, 2669.

Butterfield, J. and Isham, C. J. (1999). A topos perspective on the Kochen–Specker the-orem: II. Conceptual aspects and classical analogues, *International Journal of Theoretical Physics*
**38**, 827.

Butterfield, J. and Isham, C. J. (2000). Some possible roles for topos theory in quantum theory and quantum gravity, *Foundations of Physics*
**30**, 1707. grqc/9910005.

Butterfield, J., Hamilton, J., and Isham, C. J. (2000). A topos perspective on the Kochen–Specker theorem: III. Von Neumann algebras as the base category, *International Journal of Theoretical Physics*
**39**, 2667. quant-ph/9911020.

Connes, A. (1994). *Noncommutative Geometry*, Academic Press, New York.

Crane, L. (1995). Clock and category: Is quantum gravity algebraic?, *Journal of Mathematical Physics*
**36**, 6180.

Dimakis, A. and M¨uller-Hoissen, F. (1999). Discrete Riemannian geometry, *Journal of Mathematical Physics*
**40**, 1518.

Dimakis, A., M¨uller-Hoissen, F., and Vanderseypen, F. (1995). Discrete differential manifolds and dynamics of networks, *Journal of Mathematical Physics*
**36**, 3771.

Dubuc, E. J. (1979). Sur le mod`eles de la g´eometri´e diff´erentielle synth´etique, *Cahiers de Topologie et Geometrie Diff´erentielle*
**20**, 231.

Dubuc, E. J. (1981). *C*1 schemes, *American Journal of Mathematics*
**103**, 683.

Dugundji, J. (1966). *Topology*, Allyn and Bacon, Boston.

Eilenberg, S. and Steenrod, N. (1952). *Foundations of Algebraic Topology*, Princeton University Press, Princeton, NJ.

Einstein, A. (1924/1991). Ñber den Äther. *Schweizerische Naturforschende Gesellschaft Verhanflungen*
**105**, 85. English translation by Simon Saunders, On the ether. In *The Philosophy of Vacuum*, H. Brown and S. Saunders, eds., Clarendon Press, Oxford.

Einstein, A. (1936). Physics and reality, *Journal of the Franklin Institute*
**221**, 313.

Einstein, A. (1950). *Out of My Later Years*, Philosophical Library, New York.

Einstein, A. (1956). *The Meaning of Relativity*, Princeton University Press, Princeton, NJ. (3rd extended edition, 1990.)

Finkelstein, D. (1958). Past–future asymmetry of the gravitational field of a point particle, *Physical Review*
**110**, 965.

Finkelstein, D. (1988). “Superconducting” causal nets, *International Journal of Theoretical Physics*
**27**, 473.

Finkelstein, D. R. (1996). *Quantum Relativity: A Synthesis of the Ideas of Einstein and Heisenberg*, Springer-Verlag, Berlin.

Geroch, R. (1968a). What is a singularity in general relativity?, *Annals of Physics*
**48**, 526.

Geroch, R. (1968b). Local characterization of singularities in general relativity, *Journal of Mathematical Physics*
**9**, 450.

Geroch, R. (1972). Einstein algebras, *Communications in Mathematical Physics*
**26**, 271.

Hawking, S. W. (1975). Particle creation by black holes, *Communications in Mathematical Physics*
**43**, 199.

Hawking, S. W. (1976). Black holes and thermodynamics, *Physical Review D*
**13**, 191.

Isham, C. J. (1997). Topos theory and consistent histories: The internal logic of the set of all consistent sets, *International Journal of Theoretical Physics*
**36**, 785.

Kastler, D. (1986). Introduction to Alain Connes’ non-commutative differential geometry. In *Fields and Geometry 1986: Proceedings of the XXIInd Winter School and Workshop of Theoretical Physics*, Karpacz, Poland, A. Jadczyk, ed., World Scientific, Singapore. Lavendhomme, R. (1996). *Basic Concepts of Synthetic Differential Geometry*, Kluwer, Dordrecht.

Mallios, A. (1992). On an abstract form of Weil's integrality theorem, *Note di Matematica*
**12**, 167

Mallios, A. (1998a). *Geometry of Vector Sheaves: An Axiomatic Approach to Differential Geometry*, *Vols.*1–2, Kluwer, Dordrecht.^{133}

Mallios, A. (1988b). On an axiomatic treatment of differential geometry via vector sheaves. Applications, *Mathematica Japonica*(International Plaza), **48**, 93. Invited paper.

Mallios, A. (1999). On an axiomatic approach to geometric prequantization: A classification scheme `a la Kostant–Souriau–Kirillov, *Journal of Mathematical Sciences*(New York), **95**, 2648. Invited paper.

Mallios, A. (2001). K-Theory of topological algebras and second quantization. Extended paper version of a homonymous talk delivered at the *International Conference on Topological Algebras and Applications*, Oulu, Finland.

Mallios, A. (in press). Abstract differential geometry, general relativity and singularities. In *Unsolved Problems in Mathematics for the 21st Century: A Tribute to Kiyoshi Iseki*'s 80th Birthday, IOS Press, Amsterdam. Invited paper.

Mallios, A. (in preparation). Gauge theories from the point of view of abstract differential geometry, 2-volume work, continuation of Mallios (1998a).

Mallios, A. and Raptis, I. (2001). Finitary spacetime sheaves of quantum causal sets: Curving quantum causality, *International Journal of Theoretical Physics*
**40**, 1885. gr-qc/0102097.

Mallios, A. and Raptis, I. (2002a). *C*1-smooth singularities: Chimeras of the spacetime manifold.

Mallios, A. and Raptis, I. (2002b). Finitary, causal, and quantal vacuum Einstein gravity. Preprint gr-gc/0209048.

Mallios, A. and Rosinger, E. E. (1999). Abstract differential geometry, differential algebras of generalized functions and de Rham cohomology, *Acta Applicandae Mathematicae*
**55**, 231.

Mallios, A. and Rosinger, E. E. (2001). Space-time foam dense singularities and de Rham cohomology, *Acta Applicandae Mathematicae*, **67**, 59.

Manin, Yu. I., (1988). *Gauge Theory and Complex Geometry*, Springer-Verlag, Berlin.

O'Donnell, C. J. and Spiegel, E. (1997). *Incidence Algebras*, Marcel Dekker, New York. Monographs and Textbooks in Pure and Applied Mathematics.

Penrose, R. (1977). Space-time singularities. In *Proceedings of the First Marcel Grossmann Meeting on General Relativity*, North-Holland, Amsterdam.^{134}

Raptis, I. (2000a). Algebraic quantization of causal sets, *International Journal of Theoretical Physics*
**39**, 1233. gr-qc/9906103.

Raptis, I. (2000b). Finitary spacetime sheaves, *International Journal of Theoretical Physics*
**39**, 1703. gr-qc/0102108.

Raptis, I. (2001a). Non-commutative topology for curved quantum causality. Pre-print. gr-qc/0101082.

Raptis, I. (2001b). *Presheaves, sheaves and their topoi in quantum gravity and quantum logic.*Paper version of a talk titled “Reflections on a possible ‘quantum topos’ structure where curved quantum causality meets ‘warped’ quantum logic” given at the *5th biannual International Quantum Structures Association Conference*, in Cesena, Italy, (March–April 2001). Preprint: gr-gc/0110064. Raptis, I. (submitted) Sheafifying consistent histories. Preprint quant-ph/0107037.

Raptis, I. and Zapatrin, R. R. (2000). Quantization of discretized spacetimes and the correspondence principle, *International Journal of Theoretical Physics*
**39**, 1. gr-qc/9904079.

Raptis, I. and Zapatrin, R. R. (2001). Algebraic description of spacetime foam, *Classical and Quantum Gravity*
**20**, 4187. gr-qc/0102048.

Regge, T. (1961). General relativity without coordinates, *Nuovo Cimento*
**19**, 558.

Rideout, D. P. and Sorkin, R. D. (2000).Aclassical sequential growth dynamics for causal sets, *Physical Review D*, **61**, 024002. gr-qc/9904062.

Rota, G.-C. (1968). On the foundation of combinatorial theory, I. The theory of Möbius functions, *Zeitschrift fur Wahrscheinlichkeitstheorie*
**2**, 340.

Selesnick, S. A. (1983). Second quantization, projective modules, and local gauge invariance, *International Journal of Theoretical Physics*
**22**, 29.

Simms, D. J. and Woodhouse, N. M. J. (1976). *Lectures on Geometric Quantization*, Springer, Berlin. Lecture Notes in Physics **Vol. 53**.

Solian, A. (1977). *Theory of Modules: An Introduction to the Theory of Module Categories*(Translated from the Romanian by Mioara Buiculescu), Wiley, London.

Sorkin, R. D. (1990a). Does a discrete order underlie spacetime and its metric? *In Proceedings of the Third Canadian Conference on General Relativity and Relativistic Astrophysics*, F. Cooperstock, and B. Tupper, eds., World Scientific, Singapore.

Sorkin, R. D. (1990b). Spacetime and causal sets. In *Proceedings of the SILARG VII Conference, Cocoyoc, Mexico, preprint*.

Sorkin, R. D. (1991). Finitary substitute for continuous topology, *International Journal of Theoretical Physics*
**30**, 923.

Sorkin, R. D. (1995). A specimen of theory construction from quantum gravity. In *The Creation of Ideas in Physics*, J. Leplin, ed., Kluwer, Dordrecht.

Sorkin, R. D. (1997). Forks in the road, on the way to quantum gravity. Talk given at the symposium on *Directions in General Relativity*, University of Maryland, College Park in May 1993 in the honour of Dieter Brill and Charles Misner. gr-qc/9706002.

Sorkin, R. D. (in preparation). The causal set as the deep structure of spacetime. 134 And extensive references about singularities and their theorems there.

Souriau, J. M. (1977). Geometric quantization and general relativity. In *Proceedings of the First Marcel Grossmann Meeting on General Relativity*, North-Holland, Amsterdam.

Stachel, J. (1991). *Einstein and quantum mechanics.*In *Conceptual Problems of Quantum Gravity*, Ashtekar, A. and Stachel, J. eds., Birkhäuser, Boston.

Stanley, R. P. (1986). *Enumerative Combinatorics*, Wadsworth and Brooks, Monterey, CA.

Strooker, J. R. (1978). *Introduction to Categories, Homological Algebra and Sheaf Cohomology*, Cambridge University Press, Cambridge, UK.

von Westenholz, C. (1981). *Differential Forms in Mathematical Physics*, North-Holland, Amsterdam.

Wheeler, J. A. (1990). Information, physics, quantum: The search for links. In *Complexity, Entropy and the Physics of Information*, W. H. Zurek, ed., Addison-Wesley, Reading, MA.

Woodhouse, N. M. J. (1997). *Geometric Quantization*, 2nd ed., Clarendon Press, Oxford.

Zapatrin, R. R. (1993). Pre-Regge calculus: Topology via logic, *International Journal of Theoretical Physics*
**32**, 779.

Zapatrin, R. R. (1998). Finitary algebraic superspace, *International Journal of Theoretical Physics*
**37**, 799.

Zapatrin, R. R. (to appear). Incidence algebras of simplicial complexes. *Pure Mathematics and its Applications*. math. CO/0001065.