Skip to main content
Log in

Asymmetric alumina membranes electrochemically formed in oxalic acid solution

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Alumina membranes were fabricated by anodizing aluminium metal in 0.15 M oxalic acid. The growth kinetics of the porous layer were investigated in the temperature range −1 to 16 °C using linear potential scans up to 70 V. The faradaic efficiencies of metal oxidation and of porous layer formation, determined by applying Faraday's law, were found to be independent of both temperature and electrical charge. SEM analysis of the metal-side and solution-side surfaces revealed different morphologies. After dissolution of the barrier layer in phosphoric acid, the metal-side surface showed circular pores whose size of about 90 nm was found to be uniform and independent of temperature. The pore population was also practically independent of temperature and a value of about 4 × 1013 pores m−2 was determined. On the solution-side surface the presence of a deposit partially occluding the mouths of pores was observed. This coating could be removed by chemical etching in NaOH or thermal treatment at 870 °C, where decomposition of oxalate occurs. This supports the hypothesis that the deposit consists of an aluminium salt containing oxalate anions precipitated from the solution. The results show that it is possible to control the morphological characteristics of the anodic alumina membranes by careful choice of experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Corona and J. Santamaria, Catal. Today 51 (1999) 377.

    Google Scholar 

  2. A. Julbe, D. Farrugsen and C. Guizard, J. Membr. Sci. 181 (2001)3.

    Google Scholar 

  3. F.M. Vichi, M.T. Colomer and M.A. Anderson, Electrochem. Solid State Lett. 2 (1999) 313.

    Google Scholar 

  4. N. Wara Andro., F. Francis and B.V. Velamakanni, AIChE J. 43 (11A) (1997) 2878.

    Google Scholar 

  5. Li Shi and N.-B. Wong, J. Mater. Res. 14 (1999) 3599.

    Google Scholar 

  6. M. Pan, C. Cooper, Y.S. Lin and G.Y. Meng, J. Membr. Sci. 158 (1999) 235.

    Google Scholar 

  7. R.C. Furneaux, W.R. Rigby and A.P. Davidson, Nature 337 (1989) 147.

    Google Scholar 

  8. A. Larbot, J.P. Fabre, C. Guizard and L. Cot, J. Membr. Sci. 39 (1988) 302.

    Google Scholar 

  9. T. Okubo, M. Watanabe, K. Kusakabe and S. Morooka, J.Membr. Sci. 25 (1990) 4822.

    Google Scholar 

  10. H. Masuda and K. Fukuda, Science 268 (1995) 1466.

    Google Scholar 

  11. G. Che, B.B. Lakshmi, Ellen R. Fisher and C.R. Martin, Nature 393 (1988) 346.

    Google Scholar 

  12. T.A. Hanaoka, A. Heilmann, M. Kroll, H.P. Kormann, T. Sawitowski, G. Schmid, P. Jutzi, A. Klipp, U. Kreibig and R. Neuendorf, Appl. Organometal. Chem. 12 (1998) 367.

    Google Scholar 

  13. G. Shi, C.M. Mo, W.L. Cai and L.D. Zhang, Solid State Commun. 115 (2000) 253.

    Google Scholar 

  14. N.V. Gaponenko, O.V. Sergeev, E.A. Stepanova, V.M. Parkun, A.V. Mudry, H. Gnaser, J. Misiewicz, R. Heiderho., L.J. Balk and G.E. Thompson, J. Electrochem. Soc. 148 (2001) H13.

    Google Scholar 

  15. F. Muller, A-D. Muller, M. Kroll and G. Schmid, Appl. Surf. Sci. 171 (2001) 125.

    Google Scholar 

  16. Y. Lei, L.D. Zhang, G.W. Meng, G.H. Li, X.Y. Zhang, C.H. Liang, W. Chen and S.X. Wang, Appl. Phys. Lett. 78 (2001) 1.

    Google Scholar 

  17. J.W. Diggle, T.C. Downie and C.W. Goulding, Chem. Rev. 69 (1969) 370.

    Google Scholar 

  18. Y. Xu, G.E. Thompson and G.C. Wood, Electrochim. Acta 27 (1982) 1623.

    Google Scholar 

  19. G.E. Thompson, Y. Xu, P. Skeldon, K. Shimizu, S.H. Han and G.C. Wood, Phil. Mag. 55 (1987) 651.

    Google Scholar 

  20. O. Jessensky, F. Muller and U. Gosele, J. Electrochem. Soc. 145 (1998) 3735.

    Google Scholar 

  21. P. Bocchetta, C. Sunseri, E. Drioli, A. Regina, S. Piazza and F. Di Quarto, in preparation.

  22. F. Di Quarto, C. Gentile, S. Piazza and C. Sunseri, J. Electrochem.Soc. 138 (1991) 1856.

    Google Scholar 

  23. A. Despic and V.P. Parkhutick, in J.O.'M Bockris, R.E. White and B.E. Conway (Ed), Modern Aspects of Electrochemistry, No. 20, (Plenum Press, New York, 1989) p. 401.

    Google Scholar 

  24. J.P. O'sullivan and G.C. Wood, Proc. R. Soc. Lond., Ser. A 317 (1970) 511.

    Google Scholar 

  25. J. Siejka and C. Ortega, J. Electrochem. Soc. 124 (1977) 883.

    Google Scholar 

  26. A.T. Shawaqfeh and R.E. Baltus, J. Electrochem. Soc. 145 (1998) 2699.

    Google Scholar 

  27. Y. Liu, R.S. Alwitt and K. Shimizu, J. Electrochem Soc. 147 (2000) 1382.

    Google Scholar 

  28. C.-W. Lee, H.-S. Kang, Y.-H. Chang and Y.-M. Hahm, Korean J.Chem. Eng. 17 (2000) 266.

    Google Scholar 

  29. JCPDS International Centre for Difraction Data: file No. 16-394 (Philadelphia, 1974); file No. 23-1009 (Philadelphia, 1983). 985

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sunseri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocchetta, P., Sunseri, C., Bottino, A. et al. Asymmetric alumina membranes electrochemically formed in oxalic acid solution. Journal of Applied Electrochemistry 32, 977–985 (2002). https://doi.org/10.1023/A:1020960719245

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020960719245

Navigation