1.

Andrews, G., and Ball, J. M. (1982). Asymptotic behavior and changes of phase in onedimensional nonlinear viscoelasticity. *J. Differential Equations*
**44**, 306–341.

2.

Antman, S. S. (1988). The paradoxical asymptotic status of massless springs. *SIAM J. Appl. Math.*
**48**, 1319–1334.

3.

Antman, S. S., Marlow, R. S., and Vlahacos, C. P. (1998). The complicated dynamics of heavy rigid bodies attached to deformable rods. *Quart. Appl. Math.*
**56**, 431–460.

4.

Antman, S. S., and Seidman, T. I. (1996). Quasilinear hyperbolic-parabolic equations of one-dimensional viscoelasticity. *J. Differential Equations*
**124**, 132–185.

5.

Dafermos, C. M. (1969). The mixed initial-boundary value problem for the equations of non-linear one-dimensional viscoelasticity. *J. Differential Equations*
**6**, 71–86.

6.

Dickey, R. W. (1973). A quasi-linear evolution equation and the method of Galerkin. *Proc. Amer. Math. Soc.*
**37**, 149–156.

7.

Eden, A., and Milani, A. (1993). Exponential attractors for extensible beam equations. *Nonlinearity*
**6**, 457–479.

8.

Greenberg, J. M., MacCamy, R. C., and Mizel,6V. J. (1968). On the existence, uniqueness, and stability of solutions of the equation *γ*(*u*
_{x})*u*
_{xx}
*+λ*
_{txx}
*=ρ*{*in0*}*u*{*intt*}. *J. Math. Mech*. **17**, 707–728.

9.

Hoff, D., and Ziane, M. (2000). The global attractor and finite determining nodes for the Navier–Stokes equations of compressible flow with singular initial data. *Indiana Univ. Math. J.*
**49**, 843–889.

10.

Lefschetz, S. (1963). *Differential Equations: Geometric Theory*. Interscience.

11.

Nicolaenko, B., and Qian, W. (1998). Inertial manifolds for nonlinear viscoelastic equations. *Nonlinearity*
**11**, 1075–1093.

12.

Pego, R. L. (1987). Phase transitions in one-dimensional nonlinear viscoelasticity: Admissibility and stability. *Arch. Rational Mech. Anal.*
**97**, 293–337.

13.

Wilber, J. P. (1999). *Global Attractors for a Degenerate Partial Differential Equation from Nonlinear Viscoelasticity*. PhD thesis, University of Maryland.

14.

Wilber, J. P., and Antman, S. S. (2001). Global attractors for degenerate partial differential equations from nonlinear viscoelasticity. *Phys. D*
**150**, 177–206.

15.

Yip, S. C., Antman, S. S., and Wiegner, M. The motion of a particle on a light viscoelastic bar: Asymptotic analysis of quasilinear parabolic-hyperbolic equations. preprint.