, Volume 81, Issue 1-4, pp 453-463

Altering the balance between bacterial production and protistan bacterivory triggers shifts in freshwater bacterial community composition

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Bacterivorous protists are known to induce changes in bacterial community composition (BCC). We hypothesized that changes in BCC could be related quantitatively to a measure of grazing: the ratio of bacterial mortality to growth rate. To test this hypothesis, we analyzed time-course changes in BCC, protistan grazing rate, and bacterial production from 3 in situ studies conducted in a freshwater reservoir and three laboratory studies. In the field experiments, samples were manipulated to yield different levels of protistan bacterivory and incubated in dialysis bags. Laboratory investigations were continuous cultivation studies in which different bacterivorous protists were added to bacterial communities. BCC was assessed using 4–6 different rRNA-targeted oligonucleotide probes for community analysis. Change in BCC (Δ BCC) was estimated as the sum of changes in the proportions of the two phylogenetic groups that showed the largest shifts. Analysis of a set of 22 estimates of shifts in the ratio of grazing to production rate over periods of 48–72 h and Δ BCC showed that Δ BCC was positively and tightly correlated (r 2 = 0.784) with shifts in the ratio of grazing mortality to cell production. While the nature of a shift in BCC is unpredictable, the magnitude of the change can be related to changes in the balance between bacterial production and protistan grazing.

This revised version was published online in August 2006 with corrections to the Cover Date.