[1]

Bellare, M. and Rogaway, P. (1995), The Complexity of Approximating a Nonlinear Program, *Mathematical Programming* 69, 429–441.

[2]

Berkelaar, A.B., Jansen, B., Roos, C. and Terlaky, T. (1996), Sensitivity Analysis in (Degenerate) Quadratic Programming. Technical Report TWI 96–26, Reports of the Faculty of Technical Mathematics and Informatics, Delft University of Technology.

[3]

Bomze, I.M. (1998), On Standard Quadratic Optimization Problems, *Journal of Global Optimization* 13, 369–387.

[4]

Bomze, I.M., Dür, M., de Klerk, E., Roos, C., Quist, A. and Terlaky, T. (2000), On Copositive Programming and Standard Quadratic Optimization Problems, *Journal of Global Optimization* 18, 301–320.

[5]

de Klerk, E. and Pasechnik, D.V. (2002), Approximation of the Stability Number of a Graph via Copositive Programming, *SIAM Journal of Optimization* 12(4), 875–892.

[6]

Goemans, M.X. and Williamson, D.P. (1995), Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, *Journal of the ACM* 42, 1115–1145.

[7]

Hastad, J. (1999), Clique is Hard to Approximate Within u*V* u, *Acta Mathematica* 182, 105–142.

[8]

Motzkin, T.S. and Straus, E.G. (1965), Maxima for Graphs and a New Proof of a Theorem of Túran, *Canadian J*. *Math*. 17, 533–540.

[9]

Murty, K.G. and Kabadi, S.N. (1987), Some NP-Complete Problems in Quadratic and Linear Programming, *Mathematical Programming* 39, 117–129.

[10]

Nesterov, Y.E. (1999), Global Quadratic Optimization on the Sets with Simplex Structure. Discussion paper 9915, CORE, Katholic University of Louvain, Belgium.

[11]

Nesterov, Y.E. and Nemirovskii, A.S. (1994), *Interior Point Methods in Convex Programming*: *Theory and Applications*. SIAM, Philadelphia, PA.

[12]

Nesterov, Y.E., Wolkowicz, H. and Ye, Y. (2000), Nonconvex Quadratic Optimization, in Wolkowicz, H., Saigal, R. and Vandenberghe, L. (eds.), *Handbook of Semidefinite Programming*, pp. 361–416. Kluwer Academic Publishers, Dordrecht.

[13]

Papadimitriou, C.H. and Steiglitz, K. (1982), *Combinatorial Optimization*. *Algorithms and Complexity*. Prentice Hall, Inc., Englewood Cliffs, N.J.

[14]

Parrilo, P.A. (2000), *Structured Semidefinite Programs and Semi*-*algebraic Geometry Methods in Robustness and Optimization*. PhD thesis, California Institute of Technology, Pasadena, California, USA. Available at: http://www.cds.caltech.edu/pablo/.

[15]

Parrilo, P.A. and Sturmfels, B. (2001), *Minimizing polynomial functions*, Tech. Rep. math. OC/0103170, DIMACS, Rutgers University, March.

[16]

Pólya, G. (1928), *Uber positive Darstellung von Polynomen*. *Vierteljschr*. *Naturforsch*. *Ges*. *¨ Zurich*, 73, 141–145 (also Collected Papers 2, 309–313, MIT Press, Cambridge, MA, London, 1974).

[17]

Powers, V. and Reznick, B. (2001), A New Bound for Pólya's Theorem with Applications to Polynomials Positive on Polyhedra, *J*. *Pure Appl*. *Alg*. 164, 221–229.

[18]

J. Renegar (2001), *A Mathematical View of Interior*-*Point Methods in Convex Optimization*. Forthcoming, SIAM, Philadelphia, PA.

[19]

Quist, A.J., de Klerk, E., Roos, C. and Terlaky, T. (1998), Copositive Relaxation for General Quadratic Programming, *Optimization Methods and Software* 9, 185–209.

[20]

Sturm, J.F. (1999), Using SeDuMi 1.02, a MATLAB Toolbox for Optimization Over Symmetric Cones, *Optimization Methods and Software* 11–12, 625–653.

[21]

Vickers, G.T. and Cannings, C. (1988), Patterns of ESS's I, *J*. *Theor*. *Biol*. 132, 387–408.