1.

P.J. Graumann and L.E. Turner, “Implementing Digital Signal Processing Algorithms Using Pipelined Bit-Serial Arithmetic and Field Programmable Gate Arrays,” in *First International ACM/SIGDA Workshop on Field Programmable Gate Arrays (FPGA'92)*, 1992.

2.

J. Isoaho, J. Pasanen, O. Vainio, and H. Tenhunen, “DSP System Integration and Prototyping with FPGAs,”

*Journal of VLSI Signal Processing*, vol. 6, 1993, pp. 155-172.

CrossRef3.

M. Wahab and D. Puckey, “FPGA-Based DSP Systems,” in *Abindon EE&CS books*, W.R. Moore and W. Luk (Eds.), 1994.

4.

R.J. Petersen and B. Hutchings, “An Assessment of the Suitability of FPGA-Based Systems for Use in DSPs,” in *Lecture Notes in Computer Science*, Springer-Verlag, Berlin, 1995, no. 975, pp. 293-302.

5.

J.E. Volder, “The CORDIC Trigonometric Computing Technique,”

*IRE Trans. Electronic Computers*, vol. EC-8,no. 3, 1959, pp. 330-334.

CrossRef6.

J.S. Walther, “A Unified Algorithm for Elementary Functions,” in *Proc. Spring. Joint Comput. Conference*, vol. 38, 1971, pp. 379-385.

7.

Y. Hu, “CORDIC-Based VLSI Architectures for Digital Signal Processing,”

*IEEE Signal Processing Magazine*, vol. 9,no. 3, July 1992, pp. 16-35.

CrossRef8.

R. Andraka, “A Survey of CORDIC Algorithms for FPGAs,” in *Proceedings of the 1998 ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays (FPGA '98)*, Monterey, CA, Feb. 22–24, 1998, pp. 191-200.

9.

U. Meyer-Base, A. Meyer-Base, and W. Hilberg, “COordinate Rotation DIgital Computer (CORDIC) Synthesis for FPGA,” in *4th International Workshop on Field Programmable Logic and Applications (FPL'94)*, Prag, Czech Republic, 7–9 September, 1994.

10.

C. Dick, “Computing the Discrete Fourier Transform on FPGA Based Systolic Arrays,” in *ACM/SIGDA Int. Symp. on Field Programmable Gate Array*, Feb. 1996, pp. 129-135.

11.

U. Meyer-Base, A. Meyer-Base, J. Mellott, and F. Taylor, “A Fast Modified CORDIC-Implementation of Radial Basis Neural Networks,”

*Journal of VLSI Signal Processing*, vol. 20, 1998, pp. 211-218.

CrossRef12.

M.A. Mayosky, P.E. Battaiotto, and G.M. Toccaceli, “A CORDIC Architecture for Vector Control,” in *Proc. of the Int. Conf. on Signal Processing Applications and Technology*, 1998.

13.

N. Takagi, T. Asada, and S. Yajima, “Redundant CORDIC Methods with a Constant Scale Factor for Sine and Cosine Computation,” *IEEE Transactions on Computers*, vol. 40,no. 9, 1991.

14.

J.-A. Lee and T. Lang, “Constant-Factor Redundant CORDIC for Angle Calculation and Rotation,” *IEEE Transactions on Computers*, vol. 41,no. 8, 1992.

15.

H. Lin and A. Sips, “On-Line CORDIC Algorithms,”

*IEEE Transactions on Computers*, vol. 39, 1990, pp. 1038-1052.

CrossRef16.

J. Duprat and J.-M. Muller, “The CORDIC Algorithm: New Results for Fast VLSI Implementation,”

*IEEE Transactions on Computers*, vol. 42, 1993, pp. 168-178.

CrossRef17.

H. Dawid and H. Meyr, “The Differential CORDIC Algorithm: Constant Scale Factor Redundant Implementation without Correcting Iterations,” *IEEE Transactions on Computers*, vol. 45,no. 3, 1996.

18.

S. Wang, V. Piuri, and E. Swartzlander, “Hybrid CORDIC Algorithms,”

*IEEE Transactions on Computers*, vol. 46, 1997, pp. 1202-1207.

CrossRef19.

C. Li and S. Chen, “A Radix-4 Redundant CORDIC Algorithm with Fast On-Line Variable Scale Factor Compensation,” in *Int. Symposium of Circuit and Systems (ISCAS'97)*, Hong Kong, Jun. 1997, pp. 639-642.

20.

R.R. Osorio, E. Antelo, J. Bruguera, and E. Zapata, “Digit On-Line Large Radix CORDIC Rotator,” in *Int. Conf. On Application-Specific Array Processors*, Strasbourg, France, Jul. 1995, pp. 247-257.

21.

J. Villalba, J. Hidalgo, E. Zapata, E. Antelo, and J. Bruguera, “CORDIC Architectures with Parallel Compensation of the Scale Factor,” in *Int. Conf. on Application-Specific Array Processors*, Strabourg, France, Jul. 1995, pp. 258-269.

22.

Shen-Fu Hsiao and Jean-Marc Delosme, “Householder CORDIC Algorithm,” *IEEE Transactions on Computers*, vol. 44,no. 8, 1995.

23.

Shen-Fu Hsiao and Jen-Yin Chen, “Design, Implementation and Analysis of a New Redundant CORDIC Processor with Constant Scaling Factor and Regular Structure,” *Journal of VLSI Signal Processing*, vo. 20, 1998, pp. 267-278.

24.

Shen-Fu, Hsiao, “A High-Speed Constant-Factor Redundant CORDIC Processor without Extra Correcting or Scaling Iterations,” in *IEEE Int. Conf. On Circuits and Systems (ISCAS'99)*, Florida, 1999.

25.

M. Kuhlmann and K.K. Parhi, “A High-Speed CORDIC Algorithm and Architecture for DPS Applications,” in *Proc. of the 1999 IEEE Workshop on Signal Processing Systems (SiPS'99)*, Taipei, Taiwan, Oct. 1999.

26.

M. Kuhlmann and K.K. Parhi, “A New CORDIC Rotation Method for Generalized Coodinate Systems,” in *Proc. of the 1999 Asilomar Conference on Signal, Systems and Computers*, Pacific Grove, CA, Oct. 1999.

27.

J. Moran, I. Rios, and J. Meneses, “Signed Digit Arithmetic on FPGAs,” in More FPGAs, pp. 251-261, W.R. Moore and W. Luk (Eds.), Abindon EE&CS books, 1994.

28.

K.K. Parhi, *VLSI Digital Signal Processing Systems: Design and Implementation*, Wiley and Sons, 1999.

29.

M.D. Ercegovac and T. Lang, “On-the-Fly Conversion of Redundant into Conventional Representations,”

*IEEE Transactions on Computers*, vol. 36, 1987, pp. 895-897.

CrossRef30.

D. Timmermann and S. Dolling, “Unfolded Redundant CORDIC VLSI Architectures with Reduced Area and Power Consumption,” in *Int. Conf. on VLSI 97*, Brasilia, Sept. 1997.

31.

A. Wassatsch, S. Dolling, and D. Timmermann, “Area Minimization of Redundant CORDIC Pipeline Architectures,” in *IEEE International Conference on Computer Design (ICCD '98)*, Austin, Texas, October 1998.