Article

Plant and Soil

, Volume 243, Issue 2, pp 229-241

First online:

Responses to drought of five Brachiaria species. I. Biomass production, leaf growth, root distribution, water use and forage quality

  • Orlando GuenniAffiliated withFacultad de Agronomía, Instituto de Botánica Agrícola, Universidad Central de Venezuela
  • , Douglas MarínAffiliated withFacultad de Agronomía, Instituto de Botánica Agrícola, Universidad Central de Venezuela
  • , Zdravko BaruchAffiliated withDepartamento de Estudios Ambientales, Universidad Simón Bolívar

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The introduction of African grasses in Neotropical savannas has been a key factor to improve pasture productivity. We compared the response of five Brachiaria species to controlled drought (DT) in terms of biomass yield and allocation, pattern of root distribution, plant water use, leaf growth, nutrient concentration and dry matter digestibility. The perennial C4 forage grasses studied were B. brizantha (CIAT 6780), B. decumbens (CIAT 606), B. dictyoneura (CIAT 6133), B. humidicola (CIAT 679) and B. mutica. Two DT periods, which mimic short dry spells frequent in the rainy season, were imposed by suspending irrigation until wilting symptoms appeared. They appeared after 14 days in B. brizantha, B. decumbens and B. mutica, and after 28 days in B. humidicola and B. dictyoneura. The impossed drought stress was mild and only the largest grass, B. brizantha, showed reduced (23%) plant yield. The other grasses were able to adjust growth and biomass allocation in response to DT leaving total plant yield relatively unaffected. Brachiaria mutica, had a homogeneous root distribution throughout the soil profile. In the other species more than 80% of root biomass was allocated within the first 30 cm of the soil profile. Brachiaria brizantha and B. decumbens had the lowest proportion of roots below 50 cm. Drought caused a general reduction in root biomass. The shoot:root ratio in B. mutica and B. humidicola increased in response to DT at the expense of a reduction in root yield down to 50 cm depth. Although the total water volume utilized under DT was similar among grasses, the rate of water use was highest (0.25 l day−1) in B. brizantha, B. decumbens and B. mutica and lowest (0.13 l day−1) in B. humidicola and B. dictyoneura. In all species leaf expansion was reduced by DT but it was rapidly reassumed after rewatering. Drought increased specific leaf mass (SLM) only in B. brizantha compensating for leaf area reduction, but leaf area ratio (LAR) was unaffected in all species. In almost all grasses DT increased leaf N and K concentration and in vitro dry matter digestibility. The results indicate that B. brizantha, B. decumbens and to a lesser extent, B. mutica are better adapted to short dry periods, whereas B. humidicola and B. dictyoneura are better adapted to longer dry periods.

Brachiaria pastures drought stress forage quality growth root distribution soil water use tropical savannas