Queueing Systems

, Volume 29, Issue 2, pp 313–336

Analysis of a single-server queue interacting with a fluid reservoir

  • I.J.B.F. Adan
  • E.A. van Doorn
  • J.A.C. Resing
  • W.R.W. Scheinhardt
Article

DOI: 10.1023/A:1019144400149

Cite this article as:
Adan, I., van Doorn, E., Resing, J. et al. Queueing Systems (1998) 29: 313. doi:10.1023/A:1019144400149

Abstract

We consider a single-server queueing system with Poisson arrivals in which the speed of the server depends on whether an associated fluid reservoir is empty or not. Conversely, the rate of change of the content of the reservoir is determined by the state of the queueing system, since the reservoir fills during idle periods and depletes during busy periods of the server. Our interest focuses on the stationary joint distribution of the number of customers in the system and the content of the fluid reservoir, from which various performance measures such as the steady-state sojourn time distribution of a customer may be obtained. We study two variants of the system. For the first, in which the fluid reservoir is infinitely large, we present an exact analysis. The variant in which the fluid reservoir is finite is analysed approximatively through a discretization technique. The system may serve as a mathematical model for a traffic regulation mechanism - a two-level traffic shaper - at the edge of an ATM network, regulating a very bursty source. We present some numerical results showing the effect of the mechanism.

single-server queue fluid queue traffic regulator 

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • I.J.B.F. Adan
    • 1
  • E.A. van Doorn
    • 2
  • J.A.C. Resing
    • 1
  • W.R.W. Scheinhardt
    • 2
  1. 1.Department of Mathematics and Computing ScienceEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Faculty of Mathematical SciencesUniversity of TwenteEnschedeThe Netherlands