[1]

A. Berman and R.J. Plemmons, *Non-negative Matrices in the Mathematical Sciences* (SIAM, Philadelphia, PA, 1994).

[2]

A. Bernard and A. El Kharroubi, Régulation de processus dans le premier orthant de R^{n}, Stochastics and Stochastics Rep. 34 (1991) 149-167.

[3]

D. Bertsekas and R. Gallagher, *Data Networks* (Prentice-Hall, Englewood Cliffs, NJ, 1992).

[4]

P. Billingsley, *Convergence of Probability Measures* (Wiley, New York, 1968).

[5]

M. Bramson, Instability of FIFO queueing networks, Ann. Appl. Probab. 4 (1994) 414-431.

[6]

M. Bramson, Instability of FIFO queueing networks with quick service times, Ann. Appl. Probab. 4 (1994) 693-718.

[7]

M. Bramson, Two badly behaved queueing networks, in: *Stochastic Networks*, IMA Volumes in Mathematics and Its Applications 71, eds. F.P. Kelly and R.J. Williams (Springer, New York, 1995) pp. 105-116.

[8]

M. Bramson, Convergence to equilibria for fluid models of FIFO queueing networks, Queueing Systems 22 (1996) 5-45.

CrossRef[9]

M. Bramson, Convergence to equilibria for fluid models of head-of-the-line proportional processor sharing queueing networks, Queueing Systems 23 (1996) 1-26.

CrossRef[10]

M. Bramson, Stability of two families of queueing networks and a discussion of fluid limits, Queueing Systems 28 (1998) 7-31.

CrossRef[11]

M. Bramson, State space collapse with application to heavy traffic limits for multiclass queueing networks, Queueing Systems 30 (1998) 89-148.

CrossRef[12]

H. Carlsson and O. Nerman, An alternative proof of Lorden's renewal inequality, Adv. in Appl. Probab. 18 (1986) 1015-1016.

CrossRef[13]

H. Chen and A. Mandelbaum, Leontief systems, RBV's and RBM's, in: *Applied Stochastic Analysis*, eds. M.H.A. Davis and R.J. Elliott (Gordon and Breach, New York, 1991) pp. 1-43.

[14]

H. Chen and W. Whitt, Diffusion approximations for open queueing networks with service interruptions, Queueing Systems 13 (1993) 335-359.

CrossRef[15]

H. Chen and H. Zhang, Diffusion approximations for re-entrant lines with a first-buffer-first-served priority discipline, Queueing Systems 23 (1996) 177-195.

CrossRef[16]

H. Chen and H. Zhang, Diffusion approximations for some multiclass queueing networks with FIFO service disciplines, Preprint (1997).

[17]

J.G. Dai, On positive Harris recurrence of multiclass queueing networks: A unified approach via fluid limit models, Ann. Appl. Probab. 5 (1995) 49-77.

[18]

J.G. Dai, Stability of open multiclass queueing networks via fluid models, in: *Stochastic Networks*, IMA Volumes in Mathematics and Its Applications 71, eds. F.P. Kelly and R.J. Williams (Springer, New York, 1995) pp. 71-90.

[19]

J.G. Dai and W. Dai, A heavy traffic limit theorem for a class of open queueing networks with finite buffers, submitted to Queueing Systems (1997).

[20]

J.G. Dai and J.M. Harrison, The QNET method for two-moment analysis of closed manufacturing systems, Ann. Appl. Probab. 3 (1993) 968-1012.

[21]

J.G. Dai and V. Nguyen, On the convergence of multiclass queueing networks in heavy traffic, Ann. Appl. Probab. 4 (1994) 26-42.

[22]

J.G. Dai and Y. Wang, Nonexistence of Brownian models of certain multiclass queueing networks, Queueing Systems 13 (1993) 41-46.

CrossRef[23]

J.G. Dai, G. Wang and Y. Wang, Private communication (1992).

[24]

J.G. Dai and R.J. Williams, Existence and uniqueness of semimartingale reflecting Brownian motions in convex polyhedrons, Theory Probab. Appl. 40 (1995) 1-40.

CrossRef[25]

J.G. Dai, D.H. Yeh and C. Zhou, The QNET method for re-entrant queueing networks with priority disciplines, Oper. Res. 45 (1997) 610-623.

[26]

P. Dupuis and H. Ishii, On the Lipschitz continuity of the solution mapping to the Skorokhod problem, Stochastics and Stochastics Rep. 35 (1991) 31-62.

[27]

S.N. Ethier and T.G. Kurtz, *Markov Processes: Characterization and Convergence* (Wiley, New York, 1986).

[28]

J.M. Harrison, Brownian models of queueing networks with heterogeneous customer populations, in: *Stochastic Differential Systems, Stochastic Control Theory and Applications*, IMA Volumes in Mathematics and Its Applications, eds. W. Fleming and P.-L. Lions (Springer, New York, 1988) pp. 147-186.

[29]

J.M. Harrison, Balanced fluid models of multiclass queueing networks: A heavy traffic conjecture, in: *Stochastic Networks*, IMA Volumes in Mathematics and Its Applications 71, eds. F.P. Kelly and R.J. Williams (Springer, New York, 1995) pp. 1-20.

[30]

J.M. Harrison and V. Nguyen, Brownian models of multiclass queueing networks: Current status and open problems, Queueing Systems 13 (1993) 5-40.

CrossRef[31]

J.M. Harrison and M.I. Reiman, Reflected Brownian motion on an orthant, Ann. Probab. 9 (1981) 302-308.

[32]

J.M. Harrison and R.J. Williams, Brownian models of feedforward queueing networks: Quasireversibility and product form solutions, Ann. Appl. Probab. 2 (1992) 263-293.

[33]

J.W. Harrison and R.J. Williams, A multiclass closed queueing network with unconventional heavy traffic behavior, Ann. Appl. Probab. 6 (1996) 1-47.

CrossRef[34]

D.L. Iglehart and W. Whitt, Multiple channel queues in heavy traffic I, Adv. in Appl. Probab. 2 (1970) 150-177.

CrossRef[35]

D.L. Iglehart and W. Whitt, Multiple channel queues in heavy traffic II, Adv. in Appl. Probab. 2 (1970) 355-364.

CrossRef[36]

D.L. Iglehart and W. Whitt, The equivalence of functional central limit theorems for counting processes and associated partial sums, Ann. Math. Statist. 42 (1971) 1372-1378.

[37]

F.P. Kelly and R.J. Williams, eds., *Stochastic Networks*, IMA Volumes in Mathematics and Its Applications 71 (Springer, New York, 1995).

[38]

P.R. Kumar, Scheduling queueing networks: stability, performance analysis and design, in: *Stochastic Networks*, IMA Volumes in Mathematics and Its Applications 71, eds. F.P. Kelly and R.J. Williams (Springer, New York, 1995) pp. 21-70.

[39]

T. Lindvall, *Lectures on the Coupling Method* (Wiley, New York, 1992).

[40]

A. Mandelbaum, The dynamic complementarity problem, Preprint (1992).

[41]

A. Mandelbaum and L. Van der Heyden, Complementarity and reflection (1987, unpublished work).

[42]

W.P. Peterson, Diffusion approximations for networks of queues with multiple customer types, Math. Oper. Res. 9 (1991) 90-118.

[43]

Y.V. Prokhorov, Convergence of random processes and limit theorems in probability theory, Theory Probab. Appl. 1 (1956) 157-214.

CrossRef[44]

M.I. Reiman, Open queueing networks in heavy traffic, Math. Oper. Res. 9 (1984) 441-458.

CrossRef[45]

M.I. Reiman, Some diffusion approximations with state space collapse, in: *Proc. of the Internat. Seminar on Modeling and Performance Evaluation Methodology*, Lecture Notes in Control and Information Sciences, eds. F. Baccelli and G. Fayolle (Springer, New York, 1984) pp. 209-240.

[46]

M.I. Reiman, A multiclass feedback queue in heavy traffic, Adv. in Appl. Probab. 20 (1988) pp. 179-207.

CrossRef[47]

M.I. Reiman and R.J. Williams, A boundary property of semimartingale reflecting Brownian motions, Probab. Theory Related Fields 77 (1988) 87-97, and 80 (1989) 633.

CrossRef[48]

A.V. Skorokhod, Limit theorems for stochastic processes, Theory Probab. Appl. 1 (1956) 261-290.

CrossRef[49]

L.M. Taylor and R.J. Williams, Existence and uniqueness of semimartingale reflecting Brownian motions in an orthant, Probab. Theory Related Fields 96 (1993) 283-317.

CrossRef[50]

W. Whitt, Weak convergence theorems for priority queues: Preemptive resume discipline, J. Appl. Probab. 8 (1971) 74-94.

CrossRef[51]

W. Whitt, Large fluctuations in a deterministic multiclass network of queues, Managm. Sci. 39 (1993) 1020-1028.

[52]

R.J. Williams, On the approximation of queueing networks in heavy traffic, in: *Stochastic Networks: Theory and Applications*, eds. F.P. Kelly, S. Zachary and I. Ziedins (Oxford Univ. Press, Oxford, 1996) pp. 35-56.

[53]

R.J. Williams, An invariance principle for semimartingale reflecting Brownian motions in an orthant, Queueing Systems 30 (1998) 5-25.

CrossRef[54]

D.D. Yao, ed., *Stochastic Modeling and Analysis of Manufacturing Systems* (Springer, New York, 1994).