[1]

A. Corma, Chem. Rev. 95(1995)559.

Google Scholar[2]

W.E. Farneth and R.J. Gorte, Chem. Rev. 95(1995)615.

Google Scholar[3]

H.G. Karge and V. Dondur, J. Phys. Chem. 94(1990)765.

Google Scholar[4]

H.G. Karge, V. Dondur and J. Weitkamp, J. Phys. Chem. 95(1991) 283.

Google Scholar[5]

J.T. Miller, P.D. Hopkins, B.L. Meyers, G.J. Ray, R.T. Roginski, G.W. Zajac and N.H. Rosenbaum, J. Catal. 138(1992)115.

Google Scholar[6]

H. Stach, J. Janchen, H.-G. Jerschkewitz, U. Lohse, B. Parlitz, B. Zibrowius and M. Hunger, J. Phys. Chem. 96(1992)8473.

Google Scholar[7]

H. Stach, J. Janchen, H.-G. Jerschkewitz, U. Lohse, B. Parlitz, B. Zibrowius and M. Hunger, J. Phys. Chem. 96(1992)8480.

Google Scholar[8]

M. Crocker, R.H.M. Herold, M.H.W. Sonnemans, C.A. Emeis, A.E. Wilson and J.N. van der Moolen, J. Phys. Chem. 97(1993) 432.

Google Scholar[9]

J.-H. Kim, S. Namba and T. Yashima, Appl. Catal., A: General 100 (1993)27.

Google Scholar[10]

W.O. Haag, Stud. Surf. Sci. Catal. 94(1994)1375.

Google Scholar[11]

A.K. Neyestanaki, N. Kumar and L.-E. Lindfors, Appl. Catal., B: Environmental 7(1995)95.

Google Scholar[12]

A.W. O'Donovan, C.T. O'Connor and K.R. Koch, Microporous Mater. 5(1995)185.

Google Scholar[13]

F.M. Bautista and B. Delmon, Appl. Catal., A: General 130(1995)47.

Google Scholar[14]

T. Xiao, L. An and H. Wang, Appl. Catal., A: General 130(1995) 187.

Google Scholar[15]

J. Janchen, G. Vorbeck, H. Stach, B. Parlitz and J.H. van Hooff, Stud. Surf. Sci. Catal. 94(1995)108.

Google Scholar[16]

M. Laniecki and H.G. Karge, Stud. Surf. Sci. Catal. 94(1995)211.

Google Scholar[17]

B. Hunger, M. von Szombathely, J. Hoffmann and P. Braeuer, J. Therm. Anal. 44(1995)293.

Google Scholar[18]

W.-O. Xu, Y.-G. Yin, S.L. Suib and C.-L. O'Young, J. Phys. Chem. 99(1995)758.

Google Scholar[19]

W.-O. Xu, Y.-G. Tin, S.L. Suib, J.C. Edwards and C.-L. O'Young, J. Phys. Chem. 99(1995)9443.

Google Scholar[20]

A.M. Prakash, S. Ashtekar, D.K. Chakrabarty and S.V.V. Chilukuri, J. Chem. Soc., Faraday Trans. 91(1995)1045.

Google Scholar[21]

U. Lohse, A. Brueckner, K. Kintscher, B. Parlitz and E. Schreier, J. Chem. Soc., Faraday Trans. 91(1995)1173.

Google Scholar[22]

R. Vomscheid, M. Briend, M.-J. Peltre, D. Barthomeuf and P.P. Man, J. Chem. Soc., Faraday Trans. 91(1995)3281.

Google Scholar[23]

B. Hunger, M. Hans, M. Szombathely and E. Geidel, J. Chem. Soc., Faraday Trans. 92(1996)499.

Google Scholar[24]

Y. Xu, W. Liu, S.-T. Wong, L. Wang and X. Guo, Catal. Lett. 40(1996)207

Google Scholar[25]

E.-Y. Choi, I.-S. Nam and Y.G. Kim, J. Catal. 161(1996)597.

Google Scholar[26]

W.-O. Xu, Y.-G. Yin, S.L. Suib, J.C. Edwards and C.-L. O'Young, J. Catal. 163(1996)232.

Google Scholar[27]

N. Kumar, L.E. Lindfors and R. Byggningsbacka, Appl. Catal., A: General 139(1996)189.

Google Scholar[28]

Y. Murakami, in:

*Preparation of Catalysis III*, G. Poncelet, P. Grange and P.A. Jacobs, eds., Elsevier, Amsterdam, 1983, p. 775.

Google Scholar[29]

M. Niwa, M. Iwamoto and K. Segawa, Bull. Chem. Soc. Jpn. 59 (1986)3735.

Google Scholar[30]

M. Sawa, M. Niwa and Y. Murakami, Zeolites 10(1990)307.

Google Scholar[31]

M. Niwa, M. Sawa, N. Katada and Y. Murakami, J. Phys. Chem. 99(1995)8812.

Google Scholar[32]

R.J. Cvetanovic and Y. Amenomiya, Advan. Catal. 17(1967)103.

Google Scholar[33]

T. Hashiguchi and S. Sakai, in: *Preprint of the 11th Meeting on the Reference Catalyst of Japan*, The Catalysis Society of Japan, Tokyo, 1987, p. 6.

[34]

A.W. Chester, J.B. Higgins, G.H. Kuehl, J.L. Schlenker and G.L. Woolery, in: *Preprint of the 11th Meeting on the Reference Catalyst of Japan*, The Catalysis Society of Japan, Tokyo, 1987, p. 22.

[35]

M. Sawa, M. Niwa and Y. Murakami, Zeolites 10(1990)532.

Google Scholar[36]

D. Barthomeuf, J. Phys. Chem. 97(1993)10092.

Google Scholar[37]

D. Ding, P. Sum, Q. Jin, B. Li and J. Wang, Zeolites 14(1994)65.

Google Scholar[38]

M. Sawa, M. Niwa and Y. Murakami, in: *Proceedings of the 9th International Congress on Catalysis*, The Chemical Institute of Canada, Ottawa, 1988, p. 380.

[39]

K. Tsutsumi and K. Nishiyama, Thermochim. Acta 143(1989)299.

Google Scholar[40]

N. Katada, H. Igi, J.-H. Kim and M. Niwa, J. Phys. Chem. B 101 (1997)5969.

Google Scholar[41]

G.M. Barrow, *Physical Chemistry*, 5th ed., McGraw-Hill, 1988.

[42]

The increase of translation entropy by vaporization can be calculated as follows: where *Vm*,*V*y*Vm, f*is the ratio of the free volume of gas to liquid. The ratio is 40,000 to 80,000 for most materials at 1 bar, corresponding to 88 to 94 J K^{-1} mol^{-1} of the entropy change. This has experimentally been found as Trouton's rule, which states that the entropy increase by vaporization is 80 to 110 J K^{-1} mol^{-1} for various materials, and later confirmed by modern molecular dynamics [41].

[43]

The translation entropy of gaseous ammonia is more than 200 J K^{-1} mol^{-1}, based on the following calculation [41]: where *m*is the molecular weight [2.829 ??10^{-25} kg molecule^{-1} for ammonia, *k*is the Boltzmann constant [1.381 ??10^{-23} J K^{-1}], *h*is the Planck constant [6.626 ??10^{-34} J sec], *Vm*is the volume [m3] and *N*
_{A} is Avogadro's number [6.023 ??10^{23}]. This can be simplified for ammonia under 1 bar pressure as 111.92 + 20.79 ln *T*(J K^{-1} mol^{-1}), corresponding to 235 and 250 J K^{-1} mol^{-1} for 373 and 773 K, respectively. On the contrary, the rotation and vibration terms are usually less than a few ten joules per Kelvin per mole. For example, the entropy of deformation vibration of the adsorbed ammonium cation, which shows an IR absorption at 1460 cm-1, can be calculated as follows [41]: where *x*= *h*?vib/(*kT*), and ?vib is the frequency (= 4.377 ??10^{13} sec-1 in this case). The calculated value was only 0.2-2.1 J K^{-1} mol^{-1} at 373-773 K. For the physisorbed ammonia, the calculation gives 0.1-1.7 J K^{-1} mol^{-1} based on the 1620 cm^{-1} IR absorption. Although the chemical species is changed, the difference in the vibration entropies of the physisorbed ammonia and ammonium cation is less than 1 J K^{-1} mol^{-1}.

[44]

L.C. Jozefowics, H.G. Karge and E.N. Coker, J. Phys. Chem. 98 (1994)8053.

Google Scholar[45]

D.J. Parrillo, C. Lee and R.J. Gorte, Appl. Catal., A: General. 110 (1994)6

Google Scholar[46]

J. Shen, R.D. Cortright, Y. Chen and J.A. Dumesic, J. Phys. Chem. 98(1994)8067.

Google Scholar[47]

N. Katada, S. Iijima, H. Igi and M. Niwa, Stud. Surf. Sci. Catal. 105(1996)1227.

Google Scholar[48]

H. Igi, N. Katada and M., Niwa, *International Symposium on Zeolites and Microporous Crystals '97*, Tokyo, 1997.

[49]

G. Bagnasco, J. Catal. 159(1996)249.

Google Scholar[50]

G.L. Woolery, G.H. Kuehl, H.C. Timken and A.W. Chester, in: *Preprint of the 11th International Zeolite Conference*, Seoul, 1996, RP61.

[51]

M. Sawa, E. Yamada, M. Niwa and Y. Murakami, Nippon Kagaku Kaishi (1989)504.

[52]

K. Tanabe, M. Ito and M. Sato, J. Chem. Soc., Chem. Commun. (1973)676.