[1]

S. Adah and V.S. Subrahmanian, Amalgamating knowledge bases, II: Algorithms, data structures and query processing, J. Logic Programming (1996).

[2]

J. Alferes, C. Damásio and L.M. Pereira, A logic programming system for non-monotonic reasoning, J. Automated Reasoning 14(1) (1995) 93-147.

MATHCrossRef[3]

J. Alferes and L.M. Pereira, *Reasoning with Logic Programming*, Lecture Notes in Artificial Intelligence, Vol. 1111 (Springer, Berlin, 1996).

[4]

J. Alferes, L.M. Pereira and T. Swift, Well-founded abduction via tabling dual programs, Technical Report, SUNY Stony Brook (1999, in preparation).

[5]

G. Antoniou, D. Billington and M. Maher, Normal forms for defeasible logic, in: *International Conference on Logic Programming* (MIT Press, Cambridge, MA, 1998).

[6]

R. Ben-Eliahu and R. Dechter, Propositional semantics for disjunctive logic programs, in: *Joint International Conference/Symposium on Logic Programming* (MIT Press, Cambridge, MA, 1992) pp. 813-127.

[7]

H. Blair and V.S. Subrahmanian, Paraconsistent logic programming, Theoret. Comput. Sci. 68 (1989) 135-154.

MATHMathSciNetCrossRef[8]

R. Bol and L. Degerstedt, Tabulated resolution for well-founded semantics, J. Logic Programming 38(1) (1998) 31-55.

MathSciNet[9]

D. Boulanger, Fine-grained goal-directed declarative analysis of logic programs, in: *Proceedings of the International Workshop on Verification, Model Checking and Abstract Interpretation* (1997). Available through http://www.dsi.unive.it/~bossi/VMCAI.html.

[10]

W. Chen and D.S. Warren, Tabled evaluation with delaying for general logic programs, J. ACM 43(1) (1996) 20-74.

MATHMathSciNetCrossRef[11]

R. Cleaveland, J. Parrow and B. Steffen, The concurrency workbench: A semantics-based tool for the verification of concurrent systems, ACM Trans. Programming Languages and Systems (1993) 36-73.

[12]

M. Codish, B. Demoen and K. Sagonas, Semantics-based program analysis for logic-based languages using XSB, Springer Internat. J. Software Tools Technology Transfer 2(1) (1998) 29-45.

MATHCrossRef[13]

C. Crowner, K. Govindarajan, B. Jayaraman and S. Mantha, Preference logic grammars, Computer Languages (1999, to appear).

[14]

B. Cui, Y. Dong, X. Du, K. Kumar, C.R. Ramakrishnan, I.V. Ramakrishnan, A. Roychoudhury, S. Smolka and D.S. Warren, Logic programming and model checking, in: *PLILP '98* (Springer, Berlin, 1998) pp. 1-20.

[15]

B. Cui, T. Swift and D.S. Warren, Using tabled logic programs and preference logic for data standardization, available at http://www.cs.sunysb.edu/~tswift (1998).

[16]

C. Damásio, Paraconsistent extended logic programming with constraints, Ph.D. thesis, University Nova de Lisboa (1996).

[17]

S. Dawson, C.R. Ramakrishnan, I.V. Ramakrishnan and T. Swift, Optimizing clause resolution: Beyond unification factoring, in: *International Logic Programming Symposium* (MIT Press, Cambridge, MA, 1995) pp. 194-208.

[18]

S. Dawson, C.R. Ramakrishnan and D.S. Warren, Practical program analysis using general purpose logic programming systems — a case study, in: *ACM PLDI* (May 1996) pp. 117-126.

[19]

A. Dekhtyar and V.S. Subrahmanian, Hybrid probabilistic programs, in: *International Conference on Logic Programming* (MIT Press, Cambridge, MA, 1997) pp. 391-407.

[20]

K. Devlin, *Fundamentals of Contemporary Set Theory* (Springer, Berlin, 1980).

[21]

*Diagnostic and Statistical Manual of Mental Disorders*, 4th ed. (American Psychiatric Association, Washington, DC, 1994). Prepared by the Task Force on DSM-IV and other committees and work groups of the American Psychiatric Association.

[22]

Diagnostica, Available from Medicine Rules Inc: http://medicinerules.com.

[23]

E.A. Emerson and C.L. Lei, Efficient model checking in fragments of the propositional mu-calculus, in: *Proceedings of the 1st Annual Conference on Logic in Computer Science* (IEEE, 1986) pp. 267-278.

[24]

M. Fitting, Bilattices and the semantics of logic programming, J. Logic Programming 11 (1991) 91-116.

MATHMathSciNetCrossRef[25]

J. Freire, T. Swift and D.S. Warren, Treating I/O seriously: Resolution reconsidered for disk, in: *International Conference on Logic Programming* (1997) pp. 198-212.

[26]

J. Freire, T. Swift and D.S. Warren, Beyond depth-first: Improving tabled logic programs through alternative scheduling strategies, J. Functional Logic Programming 1998(3) (1998).

[27]

M. Gelfond and V. Lifshitz, The stable model semantics for logic programming, in: *Joint International Conference/Symposium on Logic Programming* (MIT Press, Cambridge, MA, 1988) pp. 1070-1080.

[28]

M. Gelfond and V. Lifshitz, Logic programs with classical negation, in: *International Conference on Logic Programming* (MIT Press, Cambridge, MA, 1990) pp. 579-597.

[29]

K. Govindarajan, B. Jayaraman and S. Mantha, Preference logic programming, in: *International Conference on Logic Programming* (MIT Press, Cambridge, MA, 1995) pp. 731-746.

[30]

ISO working group JTC1/SC22, Prolog international standard, Technical Report, International Standards Organization (1995).

[31]

C. Jonker, Constraints and negations in logic programs, Ph.D. thesis, Utrecht University (1994).

[32]

M. Kifer and V.S. Subrahmanian, Theory of generalized annotated logic programming and its applications, J. Logic Programming 12(4) (1992) 335-368.

MathSciNetCrossRef[33]

E. Lamma, F. Riguzzi and L.M. Pereira, Strategies in learning with extended logic programs, Technical Report, Universita di Bologna (1998).

[34]

R. Larson, D.S. Warren, J. Freire and K. Sagonas, *Syntactica, Symantica* (MIT Press, Cambridge, MA, 1995).

[35]

S. Leach and J. Lu, Computing annotated logic programs, in: *International Conference on Logic Programming* (MIT Press, Cambridge, MA, 1994) pp. 257-271.

[36]

J. Leite and L.M. Pereira, Iterated logic programming updates, in: *International Conference on Logic Programming* (MIT Press, Cambridge, MA, 1998) pp. 265-278.

[37]

R. Li and L.M. Pereira, Representing and reasoning about actions with abductive logic programming, Ann. Math. Artif. Intell. 21 (1997) 245-303.

MATHMathSciNetCrossRef[38]

X. Liu, C.R. Ramakrishnan and S. Smolka, Fully local and efficient evaluation of alternating fixed points, in: *TACAS 98: Tools and Algorithms for Construction and Analysis of Systems* (Springer, Berlin, 1998) pp. 5-19.

[39]

J. W. Lloyd, *Foundations of Logic Programming* (Springer, Berlin, 1984).

[40]

R. Milner, *Communication and Concurrency* (Prentice-Hall, New York, 1989).

[41]

I. Niemelä and P. Simons, Smodels — An implementation of the stable model and well-founded semantics for normal LP, in: *International Workshop on Logic Programming and Non-Monotonic Reasoning* (Springer, Berlin, 1997) pp. 420-429.

[42]

T. Przymusinski, Every logic program has a natural stratification and an iterated least fixed point model, in: *ACM Principles of Database Systems* (ACM Press, Cambridge, MA, 1989) pp. 11-21.

[43]

Y.S. Ramakrishna, C.R. Ramakrishnan, I.V. Ramakrishnan, S. Smolka, T. Swift and D.S. Warren, Efficient model checking using tabled resolution, in: *Proceedings on the Conference on Automated Verification* (1997) pp. 143-154.

[44]

I.V. Ramakrishnan, P. Rao, K. Sagonas, T. Swift and D.S. Warren, Efficient access mechanisms for tabled logic programs, J. Logic Programming 38(1) (1999) 31-55.

MATHCrossRef[45]

I.V. Ramakrishnan, A. Roychoudhury and T. Swift, A standardization tool for data warehousing, in: *Practical Applications of Prolog* (1997).

[46]

K. Sagonas and T. Swift, An abstract machine for tabled execution of fixed-order stratified logic programs, ACM TOPLAS 20(3) (1998) 586-635.

CrossRef[47]

K. Sagonas, T. Swift and D.S. Warren, An abstract machine for computing the well-founded semantics. Extended version of article, in: *Joint International Conference and Symposium on Logic Programming* (MIT Press, Cambridge, MA, 1996) pp. 274-289.

[48]

K. Sagonas, T. Swift and D.S. Warren, The limits of fixed-order computation, Theoret. Comput. Sci. (1999, to appear).

[49]

K. Sagonas, T. Swift, D.S. Warren, J. Freire and P. Rao, *The XSB Programmer's Manual: Version 1.9* (1998).

[50]

M. Schroeder, *Autonomous, Model-Based Diagnosis Agents* (Kluwer Academic, Dordrecht, 1998).

[51]

S. Smolka, O. Sokolsky and S. Zhang, Model checking in the modal *μ*-calculus, in: *IEEE Symposium on Logic in Computer Science* (1994).

[52]

V.S. Subrahmanian, Amalgamating knowledge bases, ACM Trans. Database Systems 19(2) (1994) 291-331.

MathSciNetCrossRef[53]

T. Swift, A new formulation of tabled resolution with delay, submitted for publication; available at http://www.cs.sunysb.edu/~tswift.

[54]

T. Swift, C. Henderson, R. Holberger, J. Murphey and E. Neham, CCTIS: An expert transaction processing system, in: *6th Conference on Industrial Applications of Artificial Intelligence* (1994) pp. 131-140.

[55]

H. Tamaki and T. Sato, OLDT resolution with tabulation, in: *International Conference on Logic Programming* (Springer, Berlin, 1986) pp. 84-98.

[56]

M. van Emden, Quantitative deduction and its fixpoint theory, J. Logic Programming 4 (1986) 37-53.

MathSciNetCrossRef[57]

A. van Gelder, K. Ross and J. Schlipf, Unfounded sets and well-founded semantics for general logic programs, J. ACM 38(3) (1991) 620-650.

MATHMathSciNetCrossRef[58]

L. Vieille, Recursive query processing: The power of logic, Theoret. Comput. Sci. 69 (1989) 1-53.

MATHMathSciNetCrossRef[59]

G. Wagner, Reasoning with inconsistency in extended deductive databases, in: *International Workshop on Logic Programming and Non-Monotonic Reasoning* (MIT Press, Cambridge, MA, 1994) pp. 300-315.