Find out how to access previewonly content
The method of fundamental solutions for elliptic boundary value problems
 Graeme Fairweather,
 Andreas Karageorghis
 … show all 2 hide
Purchase on Springer.com
$39.95 / €34.95 / £29.95*
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Abstract
The aim of this paper is to describe the development of the method of fundamental solutions (MFS) and related methods over the last three decades. Several applications of MFStype methods are presented. Techniques by which such methods are extended to certain classes of nontrivial problems and adapted for the solution of inhomogeneous problems are also outlined.
This revised version was published online in June 2006 with corrections to the Cover Date.
 M.A. Aleksidze, On approximate solutions of a certain mixed boundary value problem in the theory of harmonic functions, Differential Equations 2 (1966) 515518.
 E. Almansi, Sull' integrazione dell' equazione differentiale Δ^{2n} = 0, Annali di Mathematica Pura et Applicata, Series III, 2 (1897) 151.
 K.E. Atkinson, The numerical evaluation of particular solutions for Poisson's equation, IMA J. Numer. Anal. 5 (1985) 319338.
 P.K. Banerjee and R. Butterfield, Boundary Element Methods in Engineering Science(McGrawHill, Maidenhead, 1981).
 J.R. Berger and A. Karageorghis, The method of fundamental solutions for heat conduction in layered materials, preprint.
 J.R. Berger, J. Skilowitz and V.K. Tewary, Green's function for steadystate heat conduction in a bimaterial composite solid, preprint.
 A. Boag, Y. Leviatan and A. Boag, Analysis of acoustic scattering from fluid cylinders using a multifilament source model, J. Acoust. Soc. Amer. 83 (1988) 18. CrossRef
 A. Boag, Y. Leviatan and A. Boag, Analysis of acoustic scattering from fluid bodies using a multipoint source model, IEEE Trans. Ultrason. Ferroelectrics and Frequency Control 36 (1989) 119128. CrossRef
 A. Bogomolny, Fundamental solutions method for elliptic boundary value problems, SIAM J. Numer. Anal. 22 (1985) 644669. CrossRef
 J.F. Brady and G. Bossis, Stokesian dynamics, Ann. Rev. Fluid Mech. 20 (1988) 111157. CrossRef
 G. Burgess and E. Mahajerin, Rotational fluid flow using a least squares collocation technique, Comput. & Fluids 12 (1984) 311317. CrossRef
 G. Burgess and E. Mahajerin, A comparison of the boundary element and superposition methods, Comput. & Structures 19 (1984) 697705. CrossRef
 G. Burgess and E. Mahajerin, An analytical contour integration method for handling body forces in elasticity, Appl. Math. Modelling 9 (1985) 2732. CrossRef
 G. Burgess and E. Mahajerin, The fundamental collocation method applied to the nonlinear Poisson equation in two dimensions, Comput. & Structures 27(1987) 763767. CrossRef
 Y. Cao, W.W. Schultz and R.F. Beck, Threedimensional desingularized boundary integral methods for potential problems, Internat. J. Numer. Methods Fluids 12 (1991) 785803. CrossRef
 B.C. Carlson, A table of elliptic integrals of the third kind, Math. Comp. 51 (1988) 267280. CrossRef
 J.E. Caruthers, private communication.
 J.E. Caruthers, J.C. French and G.K. Raviprakash, Green's function discretization for numerical solution of the Helmholtz equation, J. Sound Vibration 187 (1995) 553568. CrossRef
 J.E. Caruthers, J.C. French and G.K. Raviprakash, Recent developments concerning a new discretization method for the Helmholtz equation, in: Proceedings of the First CEAS/AIAA Aeroacoustics Conference, June 1995, Munich, Germany, Vol. II (1995) pp. 819826.
 C.Y. Chan and C.S. Chen, Method of fundamental solutions for multidimensional quenching problems, Proceedings of Dynamic Systems and Applications 2 (1996) 115122.
 C.S. Chen, The method of fundamental solutions for nonlinear thermal explosion, Comm. Numer. Methods Engrg. 11 (1995) 675681. CrossRef
 C.S. Chen, The method of fundamental solutions and the quasiMonte Carlo method for Poisson's equation, in: Lecture Notes in Statistics106, eds. H. Niederreiter and P. Shuie (Springer, New York, 1995) pp. 158167.
 C.S. Chen and M.A. Golberg, A domain embedding method and quasiMonte Carlo method for Poisson's equation, in: BEM 17, eds. C.A. Brebbia, S. Kim, T.A. Osswald and H. Power (Computational Mechanics Publications, Southampton, 1995) pp. 115122.
 C.S. Chen and M.A. Golberg, Las Vegas method for diffusion equations, in: Boundary Element Technology XII, eds. J.I. Frankel, C.A. Brebbia and M.A.H. Aliabadi (Computational Mechanics Publications, Southampton, 1997) pp. 299308.
 R.S. Cheng, Deltatrigonometric and splinetrigonometric methods using the simplelayer potential representation, Ph.D. thesis, Applied Mathematics Department, University of Maryland (1987).
 S. Christiansen, On Kupradze's functional equations for plane harmonic problems, in: Function Theoretic Methods in Differential Equations, eds. R.P. Gilbert and R.J. Weinacht (Pitman, London, 1976) pp. 205243.
 D.L. Clements, Fundamental solutions for second order linear elliptic partial differential equations, in: Fundamental Solutions in Boundary Elements: Formulation and Integration, ed. F.G. Benitez (University of Sevilla, Sevilla, 1997) pp. 112.
 T. D{ie9101}broś, A singularity method for calculating hydrodynamic forces and particle velocities in lowReynoldsnumber flows, J. Fluid. Mech. 156 (1986) 121.
 G. De Mey, Integral equations for potential problems with the source function not located on the boundary, Comput. & Structures 8 (1978) 113115. CrossRef
 G. Fairweather and R.L. Johnston, The method of fundamental solutions for problems in potential theory, in: Treatment of Integral Equations by Numerical Methods, eds. C.T.H. Baker and G.F. Miller (Academic Press, London, 1982) pp. 349359.
 G. Fairweather, F.J. Rizzo, D.J. Shippy and Y.S. Wu, On the numerical solution of twodimensional potential problems by an improved boundary integral equation method, J. Comput. Phys. 31 (1979) 96112. CrossRef
 G. Fichera, Linear elliptic equations of higher order in two independent variables and singular integral equations with applications to anisotropic inhomogeneous elasticity, in: Partial Differential Equations and Continuum Mechanics, ed. R.E. Langer (University of Wisconsin Press, Madison, 1961) pp. 5580.
 R.T. Fenner, Source field superposition analysis of twodimensional potential problems, Internat. J. Numer. Methods Engrg. 32 (1991) 10791091. CrossRef
 W. Freeden and H. Kersten, A constructive approximation theorem for the oblique derivative problem in potential theory, Math. Methods Appl. Sci. 3 (1981) 104114.
 B.S. Garbow, K.E. Hillstrom and J.J. Moré, MINPACK Project, Argonne National Laboratory (1980).
 M.A. Golberg, The method of fundamental solutions for Poisson's equation, Engrg. Anal. Boundary Elem. 16 (1995) 205213. CrossRef
 M.A. Golberg, Recent developments in the numerical evaluation of particular solutions in the boundary element method, Appl. Math. Comput. 75 (1996) 91101. CrossRef
 M.A. Golberg and C.S. Chen, The theory of radial basis functions applied to the BEM for inhomogeneous partial differential equations, Boundary Elements Comm. 5 (1994) 5761.
 M.A. Golberg and C.S. Chen, On a method of Atkinson for evaluating domain integrals in the boundary element method, Appl. Math. Comput. 60 (1994) 125138. CrossRef
 M.A. Golberg, C.S. Chen and S.R. Karur, Improved multiquadratic approximation for partial differential equations, Engrg. Anal. Boundary Elem. 18 (1996) 917. CrossRef
 G. Gospodinov and D. Ljutskanov, The boundary element method applied to plates, Appl. Math. Modelling 6 (1982) 237244. CrossRef
 A.K. Gupta, The boundary integral equation method for potential problems involving axisymmetric geometry and arbitrary boundary conditions, M.S. thesis, Department of Engineering Mechanics, University of Kentucky (1979).
 P.S. Han and M.D. Olson, An adaptive boundary element method, Internat. J. Numer. Methods Engrg. 24 (1987) 11871202. CrossRef
 P.S. Han, M.D. Olson and R.L. Johnston, A Galerkin boundary element formulation with moving singularities, Engrg. Comput. 1 (1984) 232236.
 U. Heise, Numerical properties of integral equations in which the given boundary values and the sought solutions are defined on different curves, Comput. & Structures 8 (1978) 199205. CrossRef
 U. Heise, Application of the singularity method for the formulation of plane elastostatical boundary value problems as integral equations, Acta Mechanica 31 (1978) 3369. CrossRef
 I. Herrera, Boundary Methods: An Algebraic Theory(Pitman, London, 1984).
 M.J. Hopper, ed., Harwell Subroutine Library Catalogue, Theoretical Physics Division, AERE, Harwell, UK (1973).
 S. HoTai, R.L. Johnston and R. Mathon, Software for solving boundary value problems for Laplace's equation using fundamental solutions, Technical Report 136/79, Department of Computer Science, University of Toronto (1979).
 T. Inamuro, T. Saito and T. Adachi, A numerical analysis of unsteady separated flow by the discrete vortex method combined with the singularity method, Comput. & Structures 19 (1984) 7584. CrossRef
 M.A. Jaswon and G.T. Symm, Integral Equation Methods in Potential Theory and Elastostatics(Academic Press, New York, 1977).
 D. Johnson, Plate bending by a boundary point method, Comput. & Structures 26 (1987) 673680. CrossRef
 R.L. Johnston and G. Fairweather, The method of fundamental solutions for problems in potential flow, Appl. Math. Modelling 8 (1984) 265270. CrossRef
 R.L. Johnston, G. Fairweather and P.S. Han, The method of fundamental solutions, an adaptive boundary element method, for problems in potential flow and solid mechanics, in: Proceedings of the 5th ASCE Specialty Conference(Engineering Mechanics Division, Laramie, WY, 1984) pp. 140143.
 R.L. Johnston, G. Fairweather and A. Karageorghis, An adaptive indirect boundary element methodt with applications, in: Boundary Elements VIII, Proceedings of the 8th International Conference, Tokyo, Japan, September 1986, Vol. II, eds. M. Tanaka and C. Brebbia (Springer, New York, 1987) pp. 587598.
 R.L. Johnston and R. Mathon, The computation of electric dipole fields in conducting media, Internat. J. Numer. Methods Engrg. 14 (1979) 17391760. CrossRef
 A. Karageorghis, Modified methods of fundamental solutions for harmonic and biharmonic problems with boundary singularities, Numer. Methods Partial Differential Equations 8 (1992) 119. CrossRef
 A. Karageorghis, The method of fundamental solutions for the solution of steadystate free boundary problems, J. Comput. Phys. 98 (1992) 119128. CrossRef
 A. Karageorghis and G. Fairweather, The method of fundamental solutions for the numerical solution of the biharmonic equation, J. Comput. Phys. 69 (1987) 434459. CrossRef
 A. Karageorghis and G. Fairweather, The Almansi method of fundamental solutions for solving biharmonic problems, Internat. J. Numer. Methods Engrg. 26 (1988) 16681682.
 A. Karageorghis and G. Fairweather, The simple layer potential method of fundamental solutions for certain biharmonic problems, Internat. J. Numer. Methods Fluids 9 (1989) 12211234. CrossRef
 A. Karageorghis and G. Fairweather, The method of fundamental solutions for the solution of nonlinear plane potential problems, IMA J. Numer. Anal. 9 (1989) 231242.
 A. Karageorghis and G. Fairweather, The method of fundamental solutions for axisymmetric potential problems, Technical Report 01/98, Department of Mathematics and Statistics, University of Cyprus (1998).
 A. Karageorghis and G. Fairweather, The method of fundamental solutions for axisymmetric acoustic scattering and radiation problems, Technical Report 02/98, Department of Mathematics and Statistics, University of Cyprus (1998).
 M. Katsurada, A mathematical study of the charge simulation method II, J. Fac. Sci., Univ. of Tokyo, Sect. 1A, Math. 36 (1989) 135162.
 M. Katsurada, Asymptotic error analysis of the charge simulation method in a Jordan region with an analytic boundary, J. Fac. Sci., Univ. of Tokyo, Sect. 1A, Math. 37 (1990) 635657.
 M. Katsurada, Charge simulation method using exterior mapping functions, Japan J. Indust. Appl. Math. 11 (1994) 4761. CrossRef
 M. Katsurada and H. Okamoto, A mathematical study of the charge simulation method I, J. Fac. Sci., Univ. of Tokyo, Sect. 1A, Math. 35 (1988) 507518.
 M. Katsurada and H. Okamoto, The collocation points of the fundamental solution method for the potential problem, Comput. Math. Appl. 31 (1996) 123137. CrossRef
 M. Keshavarzi, A modified integral equation applied to problems of elastostatics, Comput. Methods Appl. Mech. Engrg. 16 (1978) 19. CrossRef
 S. Kim and S.J. Karrila, Microhydrodynamics: Principles and Selected Applications(ButterworthHeinemann, Stoneham, 1991).
 T. Kitagawa, On the numerical stability of the method of fundamental solution applied to the Dirichlet problem, Japan J. Appl. Math. 5 (1988) 123133.
 T. Kitagawa, Asymptotic stability of the fundamental solution method, J. Comput. Appl. Math. 38 (1991) 263269. CrossRef
 J.A. Kolodziej, Review of application of boundary collocation methods in mechanics of continuous media, Solid Mech. Arch. 12 (1987) 187231.
 P.S. Kondapalli, Timeharmonic solutions in acoustics and elastodynamics by the method of fundamental solutions, Ph.D. thesis, Department of Engineering Mechanics, University of Kentucky (1991).
 P.S. Kondapalli, D.J. Shippy and G. Fairweather, Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions, J. Acoust. Soc. Amer. 91 (1992) 18441854. CrossRef
 P.S. Kondapalli, D.J. Shippy and G. Fairweather, The method of fundamental solutions for transmission and scattering of elastic waves, Comput. Methods Appl. Mech. Engrg. 96 (1992) 255269. CrossRef
 G.H. Koopman, L. Song and J.B. Fahnline, A method for computing acoustic fields based on the principle of wave superposition, J. Acoust. Soc. Amer. 86 (1989) 24332438. CrossRef
 R. Kress and A. Mohsen, On the simulation source technique for exterior problems in acoustics, Math. Methods Appl. Sci. 8 (1986) 585597.
 V.D. Kupradze, A method for the approximate solution of limiting problems in mathematical physics, Comput. Math. Math. Phys. 4 (1964) 199205. CrossRef
 V.D. Kupradze, Potential Methods in the Theory of Elasticity(Israel Program for Scientific Translations, Jerusalem, 1965).
 V.D. Kupradze, On the approximate solution of problems in mathematical physics, Russian Math. Surveys 22 (1967) 58108. CrossRef
 V.D. Kupradze and M.A. Aleksidze, The method of functional equations for the approximate solution of certain boundary value problems, Comput. Math. Math. Phys. 4 (1964) 82126. CrossRef
 D. Levin and A. Tal, A boundary collocation method for the solution of a flow problem in a complex threedimensional porous medium, Internat. J. Numer. Methods Fluids 6 (1986) 611622. CrossRef
 S.A. Lifits and S. Yu. Reutsky, The method of fundamental solutions and singular expansions for the numerical solution of the elliptic boundaryvalue problems with singularities, Prépublication 41, Institut de Mathématiques de Jussieu, Unité Mixte de Recherche 9994, Universités Paris VI et Paris VII/CNRS (October 1995).
 M. MacDonell, A boundary method applied to the modified Helmholtz equation in three dimensions and its application to a waste disposal problem in the deep ocean, M.S. thesis, Department of Computer Science, University of Toronto (1985).
 E. Mahajerin, An extension of the superposition method for plane anisotropic elastic bodies, Comput. & Structures 21 (1985) 953958. CrossRef
 M. Maiti and S.K. Chakrabarty, Integral equations solutions for simply supported polygonal plates, Internat. J. Engrg. Sci. 12 (1974) 793806. CrossRef
 R. Mathon and R.L. Johnston, The approximate solution of elliptic boundaryvalue problems by fundamental solutions, SIAM J. Numer. Anal. 14 (1977) 638650. CrossRef
 S. Murashima and H. Kuahara, An approximate method to solve twodimensional Laplace's equation by means of superposition of Green's functions on a Riemann surface, J. Inform. Process. 3 (1980) 127139.
 S. Murashima and Y. Nonaka, Interactive Laplace's equation analyzing system ILAS, in: Boundary Elements VIII, Proceedings of the 8th International Conference, Tokyo, Japan, 1986, eds. M. Tanaka and C.A. Brebbia (Springer, Berlin, 1987) pp. 621630.
 S. Murashima, Y. Nonaka and H. Nieda, The charge simulation method and its applications to twodimensional elasticity, in: Boundary Elements V, Proceedings of the 5th International Conference, Hiroshima, Japan, 1983, eds. C.A. Brebbia, T. Fugatami and M. Tanaka (Springer, Berlin, 1983) pp. 7580.
 Y. Niwa, S. Kobayashi and T. Fukui, An application of the integral equation method to platebending problems, Mem. Fac. Eng. Kyoto Univ. (Japan) 36 (1974) 140158.
 Numerical Algorithms Group Library, NAG(UK) Ltd, Oxford, UK.
 E.R. Oliveira, Plane stress analysis by a general integral method, J. Engrg. Mech. Div. ASCE 94 (1968) 79101.
 Y.H. Pao and V. Varathatajulu, Huygens' principle, radiation conditions and integral formulae for the scattering of elastic waves, Department of Theoretical and Applied Mechanics, Cornell University (1975).
 P.W. Partridge, C.A. Brebbia and L.C. Wrobel, The Dual Reciprocity Boundary Element Method(Computational Mechanics Publications, Southampton, 1992).
 C. Patterson and M.A. Sheikh, Regular boundary integral equations for stress analysis, in: Boundary Element Methods, Proceedings of the 3rd International Seminar on Boundary Element Methods, Irvine, CA, 1981, ed. C.A. Brebbia (Springer, New York, 1981) pp. 85104.
 C. Patterson and M.A. Sheikh, On the use of fundamental solutions in Trefftz method for potential and elasticity problems, in: Boundary Element Methods in Engineering, Proceedings of the Fourth International Seminar on Boundary Element Methods, Southampton, 1982, ed. C.A. Brebbia (Springer, New York, 1982) pp. 4354.
 A. Poullikkas, The method of fundamental solutions for the solution of elliptic boundary value problems, Ph.D. thesis, Department of Mechanical Engineering, Loughborough University (1998).
 A. Poullikkas, A. Karageorghis and G. Georgiou, Methods of fundamental solutions for harmonic and biharmonic boundary value problems, Comput. Mech. 21 (1998) 416423. CrossRef
 A. Poullikkas, A. Karageorghis and G. Georgiou, The method of fundamental solutions for Signorini problems, IMA J. Numer. Anal. 18 (1998) 273285. CrossRef
 A. Poullikkas, A. Karageorghis, G. Georgiou and J. Ascough, The method of fundamental solutions for Stokes flows with a free surface, Numer. Methods Partial Differential Equations, to appear.
 A. Poullikkas, A. Karageorghis and G. Georgiou, The method of fundamental solutions for inhomogeneous elliptic problems, Comput. Mech., to appear.
 C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow(Cambridge University Press, Cambridge, 1992).
 J. Raamachandran and C. Rajamohan, Analysis of composite plates using charge simulation method, Engrg. Anal. Boundary Elem. 18 (1996) 131135. CrossRef
 D. Redekop, Fundamental solutions for the collocation method in planar elastostatics, Appl. Math. Modelling 6 (1982) 390393. CrossRef
 D. Redekop and R.S.W. Cheung, Fundamental solutions for the collocation method in threedimensional elastostatics, Comput. & Structures 26 (1987) 703707. CrossRef
 D. Redekop and J.C. Thompson, Use of fundamental solutions in the collocation method in axisymmetric elastostatics, Comput. & Structures 17 (1983) 485490. CrossRef
 F.J. Rizzo and D.J. Shippy, A boundary integral approach to potential and elasticity problems for axisymmetric bodies with arbitrary boundary conditions, Mech. Res. Comm. 6 (1979) 99103. CrossRef
 A.F. Seybert, B. Soenarko, F.J. Rizzo and D.J. Shippy, A special integral equation formulation for acoustic radiation and scattering for axisymmetric bodies and boundary conditions, J. Acoust. Soc. Amer. 80 (1986) 12411247. CrossRef
 D.J. Shippy, P.S. Kondapalli and G. Fairweather, Analysis of acoustic scattering in fluids and solids by the method of fundamental solutions, Math. Comput. Modelling 14 (1990) 7479. CrossRef
 N. Simos and A.M. Sadegh, An indirect BIM for static analysis of spherical shells using auxiliary boundaries, Internat. J. Numer. Methods Engrg. 32 (1991) 313325. CrossRef
 L. Song, G.H. Koopman and J.B. Fahnline, Numerical errors associated with the method of superposition for computing acoustic fields, J. Acoust. Soc. Amer. 89 (1991) 26252633. CrossRef
 L. Song, G.H. Koopman and J.B. Fahnline, Active control of the acoustic radiation of a vibrating structure using a superposition formulation, J. Acoust. Soc. Amer. 89 (1991) 27862792. CrossRef
 S.P. Walker, Diffusion problems using transient discrete source superposition, Internat. J. Numer. Methods Engrg. 35 (1992) 165178. CrossRef
 J.L. Wearing and O. Bettahar, The analysis of plate bending problems using the regular direct boundary element method, Engrg. Anal. Boundary Elem. 16 (1995) 261271. CrossRef
 W.C. Webster, The flow about arbitrary, threedimensional smooth bodies, J. Ship Res. 19 (1975) 206218.
 S. Weinbaum, P. Ganatos and Z.Y. Yan, Numerical multipole and boundary integral equation techniques in Stokes flow, Ann. Rev. Fluid Mech. 22 (1990) 275316. CrossRef
 T. Westphal, C.S. de Barcellos and J. Tomás Pereira, On general fundamental solutions of some linear elliptic differential operators, Engrg. Anal. Boundary Elem. 17 (1996) 279285. CrossRef
 B.C. Wu and N.J. Altiero, A boundary integral method applied to plates of arbitrary plan form and arbitrary boundary conditions, Comput. & Structures 10 (1979) 703707. CrossRef
 H. Zhou and C. Pozrikidis, Adaptive singularity method for Stokes flow past particles, J. Comput. Phys. 117 (1995) 7989. CrossRef
 C.S. Chen, M.A. Golberg and Y.C. Hon, Numerical justification of fundamental solutions and the quasiMonte Carlo method for Poissontype equations, Engrg. Anal. Boundary Elem., to appear.
 C.S. Chen, M.A. Golberg and Y.C. Hon, Las Vegas method for diffusion equations, Internat. J. Numer. Methods Engrg., to appear.
 Title
 The method of fundamental solutions for elliptic boundary value problems
 Journal

Advances in Computational Mathematics
Volume 9, Issue 12 , pp 6995
 Cover Date
 19980901
 DOI
 10.1023/A:1018981221740
 Print ISSN
 10197168
 Online ISSN
 15729044
 Publisher
 Kluwer Academic Publishers
 Additional Links
 Topics
 Keywords

 elliptic boundary value problems
 fundamental solutions
 nonlinear least squares
 boundary collocation
 65N38
 65N99
 Authors

 Graeme Fairweather ^{(1)}
 Andreas Karageorghis ^{(2)}
 Author Affiliations

 1. Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, CO, 804011887, USA
 2. Department of Mathematics and Statistics, University of Cyprus, P.O. Box 537, 1678, Nicosia, Cyprus