[1]

M. Buhmann and C.A. Micchelli, Using two slanted matrices for subdivision, Proc. London Math. Soc. 69 (1994) 428–448.

MATHMathSciNet[2]

A.S. Cavaretta, W. Dahmen and C.A. Micchelli, *Stationary Subdivision*, Memoirs of the AMS 453 (1991).

[3]

A.S. Cavaretta, W. Dahmen, C.A. Micchelli and P. Smith, A factorization theorem for banded matrices, Linear Algebra Appl. 39 (1981) 229–245.

MATHMathSciNetCrossRef[4]

C.K. Chui and J. Lian, A study of orthonormal multi-wavelets, Preprint (1995).

[5]

A. Cohen, I. Daubechies and G. Plonka, Regularity of refinable function vectors, J. Fourier Anal. Appl., to appear.

[6]

W. Dahmen and C.A. Micchelli, On stationary subdivision and the construction of compactly supported orthonormal wavelets, in: *International Series of Numerical Mathematics* 94, eds. W. Haussmann and K. Jetter (Birkhäuser, Basel, 1990) pp. 69–81.

[7]

W. Dahmen and C.A. Micchelli, Biorthogonal wavelet expansions, Constr. Approx., to appear.

[8]

I. Daubechies,

*Ten Lectures on Wavelets*, CBMS-NSF 61 (SIAM, Philadelphia, PA, 1992).

MATH[9]

G. Donovan, J.S. Geronimo and D.P. Hardin, Intertwining multiresolution analysis and the construction of piecewise polynomial wavelets, Preprint (1995).

[10]

G. Donovan, J.S. Geronimo, D.P. Hardin and P.R. Massopust, Construction of orthogonal wavelets using fractal interpolation functions, SIAM J. Math. Anal., to appear.

[11]

G.B. Follard, *Real Analysis* (Wiley, New York, 1984).

[12]

M. Gasca and C.A. Micchelli, eds., *Total Positivity and its Applications* (Kluwer, 1996).

[13]

J.S. Geronimo, D.P. Hardin and P.R. Massopust, Fractal functions and wavelet expansions based on several scaling functions, J. Approx. Theory 78 (1995) 373–401.

MathSciNetCrossRef[14]

T.N.T. Goodman, R.Q. Jia and C.A. Micchelli, The *ℓ*
_{2}(ℤ) spectral radius of an *N*-periodic two slanted bi-infinite matrix is an eigenvalue, Preprint (1996).

[15]

T.N.T. Goodman and S.L. Lee, Wavelets of multiplicity

*r*, Trans. Amer. Math. Soc. 342 (1994) 307–324.

MATHMathSciNetCrossRef[16]

T.N.T. Goodman, S.L. Lee and W.S. Tang, Wavelets in wandering spaces, Trans. Amer. Math. Soc. (1993) 639–654.

[17]

C. Heil and D. Colella, Matrix refinement equations: Existence and uniqueness, Preprint (1994).

[18]

C. Heil, P.H. Heller, G. Strang, V. Strela and P. Topiwala, The application of multiwavelet filter banks to signal and image processing, Preprint (1995).

[19]

C. Heil, G. Strang and V. Strela, Approximation by translates of refinable functions, Numer. Math. 73 (1996) 75–94.

MATHMathSciNetCrossRef[20]

L. Hervé, Multiresolution analysis of multiplicity

*d*: applications to dyadic interpolation, Appl. Comput. Harmon. Anal. 1 (1994) 299–315.

MATHMathSciNetCrossRef[21]

R.Q. Jia, Total positivity of the discrete spline collocation matrix, J. Approx. Theory 39 (1983) 11–23.

MATHMathSciNetCrossRef[22]

R.Q. Jia, Subdivisions schemes in

*L*
_{p} spaces, Adv. Comput. Math. 3 (1995) 309–341.

MATHMathSciNetCrossRef[23]

R.Q. Jia and C.A. Micchelli, Using the refinement equation for the construction of pre-wavelets II: powers of two, in: *Curves and Surfaces*, eds. P.J. Laurent, A. Le Méhauté and L.L. Schumaker (Academic Press, Boston, 1991) pp. 209–258.

[24]

R.Q. Jia and C.A. Micchelli, On the linear independence for integer translates of a finite number of functions, Proc. Edinburgh Math. Soc. 36 (1992) 69–85.

MathSciNetCrossRef[25]

R.Q. Jia, S. Riemenschneider and D.X. Zhou, Smoothness of multiple refinable functions and multiple wavelets, Preprint (1997).

[26]

T.Y. Lam,

*Serre's Conjecture*, Lecture Notes in Mathematics 635 (Springer, New York, 1978).

MATH[27]

W. Lawton, S.L. Lee and Z. Shen, Stability and orthonormality of multiwavelets, Preprint (1995).

[28]

W. Lawton, S.L. Lee and Z. Shen, Algorithm for matrix extension and wavelet construction, Math. Comp. 65 (1996) 723–737.

MATHMathSciNetCrossRef[29]

W. Lawton, S.L. Lee and Z. Shen, Convergence of multidimensional cascade algorithm, Numer. Math., to appear.

[30]

R. Long, W. Chen and S. Yuan, Wavelets generated by vector multiresolution analysis, Preprint (1995).

[31]

J.L. Merrien, A family of Hermite interpolants by bisection algorithms, Numer. Algorithms 2 (1992) 187–200.

MATHMathSciNetCrossRef[32]

C.A. Micchelli, Using the refinement equation for the construction of pre-wavelets VI: Shift invariant subspaces, in: *Approximation Theory, Spline Functions and Applications*, ed. S.P. Singh (Kluwer Academic Publishers, 1992) pp. 213–222.

[33]

C.A. Micchelli,

*Mathematical Aspects of Geometric Modeling*, CBMS-NSF 65 (SIAM, Philadelphia, PA, 1995).

MATH[34]

C.A. Micchelli, Interpolatory subdivision schemes and wavelets, J. Approx. Theory 86 (1996) 41–71.

MATHMathSciNetCrossRef[35]

C.A. Micchelli and H. Prautzsch, Uniform refinement of curves, Linear Algebra Appl. 114/115 (1989) 841–870.

MathSciNetCrossRef[36]

C.A. Micchelli and T. Sauer, On vector subdivision, Preprint (1997).

[37]

C.A. Micchelli and T. Sauer, Sobolev norm convergence of stationary subdivision schemes, in: *Surface Fitting and Multiresolution Methods*, eds. A. Le Méhauté, C. Rabut and L.L. Schumaker (Vanderbilt University Press, 1997) pp. 245–261.

[38]

C.A. Micchelli and Y. Xu, Using the matrix refinement equation for the construction of wavelets on invariant sets, Appl. Comput. Harmon. Anal. 4 (1994) 391–401.

MATHMathSciNetCrossRef[39]

G. Plonka, Spline wavelets with higher defect, in: *Curves and Surfaces II*, eds. P.J. Laurent, A. Le Méhauté and L.L. Schumaker (A.K. Peters, Boston, 1994) pp. 387–398.

[40]

G. Plonka, Approximation properties of multi-scaling functions: A Fourier approach, Rostock. Math. Kolloq. 49 (1995) 115–126.

MATHMathSciNet[41]

G. Plonka, Two-scale symbol and autocorrelation symbol for B-splines with multiple knots, Adv. Comput. Math. 3 (1995) 297–306.

MathSciNetCrossRef[42]

G. Plonka, Approximation order provided by refinable function vectors, Constr. Approx., to appear.

[43]

G. Plonka and V. Strela, Construction of multi-scaling functions with approximation and symmetry, SIAM J. Math. Anal., to appear.

[44]

W. Rudin,

*Functional Analysis* (McGraw-Hill, New York, 1973).

MATH[45]

L.L. Schumaker,

*Spline Functions: Basic Theory* (Wiley, New York, 1981).

MATH[46]

Z. Shen, Refinable function vectors, Preprint (1995).

[47]

G. Strang and V. Strela, Finite element multiwavelets, Preprint (1995).

[48]

G. Strang and V. Strela, Short wavelets and matrix dilation equations, IEEE Trans. Signal Processing 43 (1995).