Pharmaceutical Research

, Volume 11, Issue 3, pp 412–419

Hydrogen Bonding Potential as a Determinant of the in Vitro and in Situ Blood–Brain Barrier Permeability of Peptides

Authors

  • Elsbeth G. Chikhale
    • Department of Pharmaceutical ChemistryThe University of Kansas
  • Ka-Yun Ng
    • Department of Pharmaceutical ChemistryThe University of Kansas
  • Philip S. Burton
    • The Upjohn Company
  • Ronald T. Borchardt
    • Department of Pharmaceutical ChemistryThe University of Kansas
Article

DOI: 10.1023/A:1018969222130

Cite this article as:
Chikhale, E.G., Ng, K., Burton, P.S. et al. Pharm Res (1994) 11: 412. doi:10.1023/A:1018969222130

Abstract

With the exception of various central nervous system (CNS)-required nutrients for which specific, saturable transport systems exist, the passage of most water-soluble solutes through the blood–brain barrier (BBB) is believed to depend largely on the lipid solubility of the solutes. Most peptides, therefore, do not enter the CNS because of their hydrophilic character. Recently, utilizing homologous series of model peptides and Caco-2 cell monolayers as a model of the intestinal mucosa, it was concluded that the principal determinant of peptide transport across the intestinal cellular membrane is the energy required to desolvate the polar amide bonds in the peptide (P. S. Burton et al., Adv. Drug Deliv. Rev. 7:365–386, 1991). To determine whether this correlation can be extended to the BBB, the permeabilities of the same peptides were determined using an in vitro as well as an in situ BBB model. The peptides, blocked on the N- and C-terminal ends, consisted of D-phenylalanine (F) residues: AcFNH2, AcF2NH2, AcF3NH2, AcF2(NMeF)NH2, AcF(NMeF)2NH2, Ac(NMeF)3NH2, and Ac(NMeF)3NHMe. A good correlation among the permeabilities of these model peptides across the bovine brain microvessel endothelial cell (BBMEC) monolayers, an in vitro model of the BBB, and their permeabilities across the BBB in situ was observed (r = 0.928, P < 0.05). The permeabilities of these peptides did not correlate with the octanol–buffer partition coefficients of the peptides (r = 0.389 in vitro and r = 0.155 in situ; P < 0.05). However, correlations were observed between the permeabilities of these peptides and the number of potential hydrogen bonds the peptides can make with water (r = 0.837 in vitro and r = 0.906 in situ; P < 0.05), suggesting that desolvation of the polar bonds in the molecule is a determinant of permeability. Consistent with this, good correlations were found between the permeabilities of these peptides and their partition coefficients between heptane–ethylene glycol (r = 0.981 in vitro and r = 0.940 in situ ; P < 0.05) or the differences in partition coefficients between octanol–buffer and isooctane–buffer (ΔlogPC) (r = 0.961 in vitro and r = 0.962 in situ; P < 0.05), both of which are experimental estimates of hydrogen bond or desolvation potential. These results suggest that the permeability of peptides through the BBB is governed by the same physicochemical parameter (hydrogen bonding potential) as their permeability through the intestinal mucosa.

hydrogen bonding potentialdesolvation energyblood–brain barrierin situ rat brain perfusionbovine brain microvessel endothelial cellspeptide transportin vitro and in situ correlation

Copyright information

© Plenum Publishing Corporation 1994