[1]

K.R. Apt, H.A. Blair and A. Walker, Towards a theory of declarative knowledge, in: *Foundations of Deductive Databases and Logic Programming*, ed. J. Minker (Morgan Kaufmann, Los Altos, 1988) pp. 89-148.

[2]

C. Bell, A. Nerode, R.T. Ng and V.S. Subrahmanian, Mixed integer programming methods for computing nonmonotonic deductive databases, Journal of the ACM 41(6) (1994) 1178-1215.

MATHMathSciNetCrossRef[3]

A.L. Blum and M.L. Furst, Fast planning through planning graph analysis, Artificial Intelligence 90 (1997) 281-300.

MATHCrossRef[4]

T. Bylander, Complexity results for planning, in: *Proceedings of the 12th International Joint Conference on Artificial Intelligence*, Sydney, Australia (Morgan Kaufmann, 1991) pp. 274-279.

[5]

M. Cadoli and L. Palopoli, Circumscribing DATALOG: Expressive power and complexity, Theor. Comput. Sci. 1–2 (1998) 215-244.

MathSciNetCrossRef[6]

M. Cadoli, L. Palopoli, A. Schaerf and D. Vasile, NP-SPEC: An executable specification language for solving all problems in NP, in: *Proceedings of the First International Workshop on Practical Aspects of Declarative Languages*, San Antonio, TX, January 1999 (Springer, 1999) pp. 16-30.

[7]

W. Chen and D.S. Warren, Computation of stable models and its integration with logical query processing, IEEE Trans. Knowledge Data Engrg. 8(5) (1996) 742-757.

CrossRef[8]

W. Chen and D.S. Warren, Tabled evaluation with delaying for general logic programs, Journal of the ACM 43(1) (1996) 20-74.

MATHMathSciNetCrossRef[9]

P. Cholewiński, Towards programming in default logic, in: *Proceedings of the 9th International Symposium on Methodologies for Intelligent Systems*, Zakopane, Poland, June 1996 (Springer, 1996) pp. 223-232.

[10]

P. Cholewiński, V.W. Marek, A. Mikitiuk and M. Truszczyński, Experimenting with nonmonotonic reasoning, in: *Proceedings of the 12th International Conference on Logic Programming*, Tokyo (June 1995) pp. 267-281.

[11]

P. Cholewiński, V.W. Marek and M. Truszczyński, Default reasoning system DeReS, in: *Proceedings of the 5th International Conference on Principles of Knowledge Representation and Reasoning*, Cambridge, MA, November 1996 (Morgan Kaufmann, 1996) pp. 518-528.

[12]

J.M. Crawford and L.D. Auton, Experimental results on the crossover point in random 3-SAT, Artificial Intelligence 81(1) (1996) 31-57.

MathSciNetCrossRef[13]

Y. Dimopoulos, B. Nebel and J. Koehler, Encoding planning problems in non-monotonic logic programs, in: *Proceedings of the Fourth European Conference on Planning*, Toulouse, France, September 1997 (Springer, 1997) pp. 169-181.

[14]

W.F. Dowling and J.H. Gallier, Linear-time algorithms for testing the satisfiability of propositional Horn formulae, J. Logic Programming 3 (1984) 267-284.

MathSciNetCrossRef[15]

T. Eiter, N. Leone, C. Mateis, G. Pfeifer and F. Scarnello, The KR system dlv: Progress report, comparisons and benchmarks, in: *Proceedings of the 6th International Conference on Principles of Knowledge Representation and Reasoning*, Trento, Italy, June 1998 (Morgan Kaufmann, 1998) pp. 406-417.

[16]

C. Elkan, A rational reconstruction of nonmonotonic truth maintenance systems, Artificial Intelligence 43 (1990) 219-234.

MATHMathSciNetCrossRef[17]

M. Gelfond and V. Lifschitz, The stable model semantics for logic programming, in: *Proceedings of the 5th International Conference on Logic Programming*, Seattle, August 1988 (MIT Press, Cambridge, MA, 1988) pp. 1070-1080.

[18]

M. Gelfond and V. Lifschitz, Logic programs with classical negation, in: *Proceedings of the 7th International Conference on Logic Programming*, Jerusalem, Israel, June 1990 (MIT Press, Cambridge, MA, 1990) pp. 579-597.

[19]

M. Gelfond and V. Lifschitz, Representing actions and change by logic programs, J. Logic Programming 17 (1993) 301-322.

MATHMathSciNetCrossRef[20]

K. Heljanko, Using logic programs with stable model semantics to solve deadlock and reachability problems for 1-safe Petri nets, in: *Proceedings of the 5th International Conference on Tools and Algorithms for the Construction and Analysis of Systems*, Amsterdam, The Netherlands, March 1999 (Springer, 1999) pp. 240-254.

[21]

J. Jaffar and J.-L. Lassez, Constraint logic programming, in: *Conference Record of the 14th Annual ACM Symposium on Principles of Programming Languages*, ed. M.J. O'Donnell, Munich, Germany, January 1987 (ACM Press, 1987) pp. 111-119.

[22]

A.C. Kakas and C. Mourlas, ACLP: Flexible solutions to complex problems, in: *Proceedings of the 4th International Conference on Logic Programming and Non-Monotonic Reasoning*, Dagstuhl, Germany, July 1997 (Springer, Berlin, 1997) pp. 387-398.

[23]

D.E. Knuth, The Stanford GraphBase, 1993. Available at ftp://labrea.stanford.edu/.

[24]

X. Liu, C.R. Ramakrishnan and S.A. Smolka, Fully local and efficient evaluation of alternating fixed points, in: *Proceedings of the 4th International Conference on Tools and Algorithms for the Construction and Analysis of Systems*, ed. B. Steffen, Lisbon, Portugal, March/April 1998 (Springer, Berlin, 1998) pp. 5-19.

[25]

W. Marek and M. Truszczyński, Autoepistemic logic, Journal of the ACM 38 (1991) 588-619.

MATHCrossRef[26]

W. Marek and M. Truszczyński, Stable models and an alternative logic programming paradigm, in: *The Logic Programming Paradigm: a 25-Year Perspective* (Springer, 1999) pp. 375-398, to appear.

[27]

R.C. Moore, Semantical considerations on nonmonotonic logic, Artificial Intelligence 25 (1985) 75-94.

MATHMathSciNetCrossRef[28]

I. Niemelä, Towards efficient default reasoning, in: *Proceedings of the 14th International Joint Conference on Artificial Intelligence*, Montreal, Canada, August 1995 (Morgan Kaufmann, 1995) pp. 312-318.

[29]

I. Niemelä and P. Simons, Efficient implementation of the well-founded and stable model semantics, in: *Proceedings of the Joint International Conference and Symposium on Logic Programming*, ed. M. Maher, Bonn, Germany, September 1996 (MIT Press, Cambridge, MA, 1996) pp. 289-303.

[30]

I. Niemelä and P. Simons, Smodels — an implementation of the stable model and well-founded semantics for normal logic programs, in: *Proceedings of the 4th International Conference on Logic Programming and Non-Monotonic Reasoning*, Dagstuhl, Germany, July 1997 (Springer, Berlin, 1997) pp. 420-429.

[31]

R. Reiter, A logic for default reasoning, Artificial Intelligence 13 (1980) 81-132.

MATHMathSciNetCrossRef[32]

K. Sagonas, T. Swift and D.S. Warren, An abstract machine for computing the well-founded semantics, in: *Proceedings of the Joint International Conference and Symposium on Logic Programming*, ed. M. Maher, Bonn, Germany, September 1996 (MIT Press, Cambridge, MA, 1996) pp. 274-288.

[33]

P. Simons, Towards constraint satisfaction through logic programs and the stable model semantics, Research report A47, Helsinki University of Technology, Helsinki, Finland (August 1997). Available at http://www.tcs.hut.fi/pub/reports/A47.ps.gz.

[34]

V.S. Subrahmanian, D. Nau and C. Vago, WFS + branch and bound = stable models, IEEE Trans. Knowledge Data Engrg. 7(3) (1995) 362-377.

CrossRef[35]

T. Syrjänen, Implementation of local grounding for logic programs with stable model semantics, Technical report B18, Helsinki University of Technology, Digital Systems Laboratory, Espoo, Finland (October 1998). Available at http://www.tcs.hut.fi/pub/reports/B18.ps.gz.

[36]

M.H. van Emden and R.A. Kowalski, The semantics of predicate logic as a programming language, Journal of the ACM 23 (1976) 733-742.

MATHMathSciNetCrossRef[37]

A. Van Gelder, K.A. Ross and J.S. Schlipf, The well-founded semantics for general logic programs, Journal of the ACM 38(3) (1991) 620-650.

MATHMathSciNetCrossRef[38]

J.-H. You, R. Cartwright and M. Li, Iterative belief revision in extended logic programming, Theor. Comput. Sci. 170 (1996) 383-406.

MATHMathSciNetCrossRef