[1]

J.J. Alferes, C.V. Damásio and L.M. Pereira, SLX — A top-down derivation procedure for programs with explicit negation, in: *International Logic Programming Symposium*, ed. M. Bruynooghe (MIT Press, 1994).

[2]

J.J. Alferes and L.M. Pereira,

*Reasoning with Logic Programming*, LNAI 1111 (Springer, 1996).

Google Scholar[3]

J.J. Alferes, L.M. Pereira and T.C. Przymusinski, “Classical” negation in non-monotonic reasoning and logic programming, in: *Artificial Intelligence and Mathematics Workshop*, eds. H. Kautz and B. Selman (Fort Lauderdale, 1996).

[4]

K.R. Apt and M. Bezem, Acyclic programs, in: *Proc. of ICLP 90* (MIT Press, 1990) pp. 579–597

[5]

A.B. Baker, Nonmonotonic reasoning in the framework of situation calculus, Artificial Intelligence 49 (1991) 5–23.

MATHMathSciNetCrossRefGoogle Scholar[6]

A.B. Baker and M.L. Ginsberg, Temporal projection and explanation, in: *Proc. of the IJCAI 89* (Morgan Kaufmann, 1989) pp. 906–911.

[7]

C. Baral and M. Gelfond, Representing concurrent actions in extended logic programming, in: *IJCAI* (Morgan Kaufmann, 1993) pp. 866–871.

[8]

C. Baral and M. Gelfond, Reasoning about effects of concurrent actions, Manuscript, University of Texas at El Paso (1994).

Google Scholar[9]

K. van Belleghem, M. Denecker and D. de Schreye, Combining situation calculus and event calculus, in: *Proc. of ICLP 95* (MIT Press, 1995).

[10]

K. Clark, Negation as failure, in: *Logic and Databases*, eds. H. Gallaire and J. Minker (Plenum Press, 1978) pp. 293–322.

[11]

L. Console, D.T. Dupre and P. Torasso, On the relationship between abduction and deduction, J. of Logic and Computation 1(5) (1991) 661–690.

MATHGoogle Scholar[12]

J. Crawford and D.W. Etherington, Formalizing reasoning about change: a qualitative reasoning approach, in: *Proc. of AAAI 92* (1992) pp. 577–583.

[13]

C.V. Damásio, L.M. Pereira and N. Wolfgang, REVISE: An extended logic programming system for revising knowledge bases, in: *Proc. of KR 94* (1994).

[14]

J. de Kleer, A.K. Mackworth and R. Reiter, Characterizing diagnoses and systems, Artificial Intelligence 56 (1992) 197–222.

MATHMathSciNetCrossRefGoogle Scholar[15]

M. Denecker and D. de Schreye, SLDNFA: an abductive procedure for normal abductive programs, in: *Logic Programming: Proc. of 1992 Int. Joint Conference and Symposium*, ed. Apt (MIT Press, 1992) pp. 686–700.

[16]

M. Denecker, Knowledge representation and reasoning in incomplete logic programming, Ph.D. thesis, Department of Computer Science, K.U. Leuven (1993).

Google Scholar[17]

M. Denecker and D. de Schreye, Representing incomplete knowledge in abductive logic programming, in: *Logic Programming: Proc. of the 1993 Int. Symposium* (MIT Press, 1993) pp. 147–163.

[18]

P.M. Dung, Representing actions in logic programming and its application in database updates, in: *Proc. of ICLP 93* (MIT Press, 1993) pp. 222–238.

[19]

E. Eshghi and R. Kowalski, Abduction compared with negation as failure, in: *Proc. of the 6th Int. Conf. on Logic Programming*, eds. G. Levi and M. Martelli (MIT Press, 1989) pp. 234–254.

[20]

C. Evans, Negation-as-failure as an approach to the Hanks and McDermott problem, in: *Proc. of the 2nd Int. Symp. on Artificial Intelligence* (1989).

[21]

M. Gelfond, Autoepistemic logic and formalization of commonsense reasoning, in: *Non-Monotonic Reasoning: Second International Workshop*, Lecture Notes in Artificial Intelligence 346 (Springer, 1989) pp. 176–186.

[22]

M. Gelfond and V. Lifschitz, The stable model semantics for logic programming, in: *Proc. of 5th Logic Programming Symposium*, eds. R. Kowalski and K. Bowen (MIT Press, 1988) pp. 1070–1080.

[23]

M. Gelfond and V. Lifschitz, Logic programs with classical negation, in: *Logic Programming: Proc. of the 7th Int. Conf.*, eds. D. Warren and P. Szeredi (MIT Press, 1990) pp. 579–597.

[24]

M. Gelfond and V. Lifschitz, Representing action and change by logic programs, Journal of Logic Programming 17 (1993) 301–322.

MATHMathSciNetCrossRefGoogle Scholar[25]

M. Gelfond, V. Lifschitz and A. Rabinov, What are the limitations of the situation calculus?, in: *Automated Reasoning: Essays in Honor of Woody Bledsoe*, ed. R. Moore (1991) pp. 167–179.

[26]

R. Greiner, B. Smith and R. Wilkerson, A correction to the algorithm in Reiter's theory of diagnosis, Artificial Intelligence 41(1) (1989) 79–88.

MATHMathSciNetCrossRefGoogle Scholar[27]

W. Hamscher, L. Console and J. de Kleer, eds., *Readings in Model-Based Diagnosis* (Morgan Kaufmann, 1992).

[28]

S. Hanks and D. McDermott, Nonmonotonic logics and temporal projection, Artificial Intelligence 35 (1988) 165–195.

MathSciNetCrossRefGoogle Scholar[29]

B.A. Haugh, Simple causal minimizations for temporal persistence and projection, in: *Proc. of the AAAI 87* (1987) pp. 218–223.

[30]

A.C. Kakas, R.A. Kowalski and F. Toni, Abductive logic programming, J. of Logic and Computation 2(6) (1993) 719–770.

MathSciNetGoogle Scholar[31]

G.N. Kartha, Two counterexamples related to Baker's approach to the frame problem, Artificial Intelligence 69 (1994) 379–391.

MATHMathSciNetCrossRefGoogle Scholar[32]

G.N. Kartha, Soundness and completeness theorems for three formalizations of action, in: *Proc. IJCAI 93* (MIT Press, 1993) pp. 712–718.

[33]

G.N. Kartha and V. Lifschitz, Actions with indirect effects: preliminary report, in: *Proc. of KR 94* (Morgan Kaufmann, 1994) pp. 341–350.

[34]

H.A. Kautz, The logic of persistence, in: *Proc. of the AAAI 86* (1986) pp. 401–405.

[35]

R.A. Kowalski and M. Sergot, A logic-based calculus of events, New Generation Computing 4 (1986) 67–75.

CrossRefGoogle Scholar[36]

R.A. Kowalski and F. Sadri, The situation calculus and event calculus compared, in: *Proc. of ILPS 94* (MIT Press, 1994) pp. 539–553.

[37]

R. Li and L.M. Pereira, Temporal reasoning with abductive logic programming, in: *Proc. of ECAI 96* (1996) pp. 13–17.

[38]

R. Li and L.M. Pereira, What is believed is what is explained (sometimes), in: *Proc. of AAAI 96* (1996) pp. 550–555.

[39]

R. Li and L.M. Pereira, Updating temporal knowledge bases with the possible causes approach, in: *Artificial Intelligence: Methodology, Systems, Applications*, ed. A.M. Ramsay (IOS Press, 1996) pp. 148–157.

[40]

R. Li and L.M. Pereira, Knowledge-based situated agents among us, in:

*Intelligent Agents III — Proc. of the Third International Workshop on Agent Theories. Architectures, and Languages (ATAL 96)*, eds. J.P. Muller, M.J. Wooldridge and N.R. Jennings, LNAI (Springer, 1997).

Google Scholar[41]

V. Lifschitz, Towards a metatheory of action, in: *Proc. of KR 91* (Morgan Kaufmann) pp. 376–386.

[42]

V. Lifschitz, Formal theories of action, in: *The Frame Problem in Artificial Intelligence* (Morgan Kaufmann, 1987) pp. 35–57.

[43]

V. Lifschitz, Nested abnormal theories, Manuscript, University of Texas at Austin (1994).

Google Scholar[44]

V. Lifschitz and A. Robinov, Miracles in formal theories of action, Artificial Intelligence 38(2) (1989) 225–237.

MATHMathSciNetCrossRefGoogle Scholar[45]

V. Lifschitz, Pointwise circumscription, in: *Readings in Nonmonotonic Reasoning*, ed. M.L. Ginsberg (Morgan Kaufmann, 1987) pp. 410–423.

[46]

F. Lin and Y. Shoham, Provably correct theories of actions: preliminary report, in: *Proc. of AAAI 91* (1991).

[47]

F. Lin and Y. Shoham, Concurrent actions in the situation calculus, in: *Proc. of AAAI 92* (1992) pp. 590–595.

[48]

J.W. Lloyd and R.W. Topor, Making prolog more expressive, Journal of Logic Programming 1(3) (1984) 225–240.

MATHMathSciNetCrossRefGoogle Scholar[49]

J. McCarthy and P.J. Hayes, Some philosophical problems from the stand-point of artificial intelligence, in: *Machine Intelligence* 4, eds. B. Meltzer and D. Michie (Edinburgh, 1969) pp. 463–502.

[50]

J. McCarthy, Applications of circumscription to formalizing common-sense knowledge, Artificial Intelligence 28 (1986) 89–116.

MathSciNetCrossRefGoogle Scholar[51]

P. Morris, The Anomalous extension problem in default reasoning, Artificial Intelligence 35(3) (1988) 383–399.

MATHMathSciNetCrossRefGoogle Scholar[52]

E.P.D. Pednault, ADL: Exploring the middle ground between STRIPS and the situation calculus, in: *Proc. of KR 89*, eds. R.J. Brachman, H. Levesque and R. Reiter (Morgan Kaufmann) pp. 324–332.

[53]

E.P.D. Pednault, ADL and the state-transition model, Journal of Logic and Computation 4(5) (1994) 467–517.

MATHMathSciNetGoogle Scholar[54]

L.M. Pereira and J.J. Alferes, Well-founded semantics for logic programs with explicit negation, in: *European Conf. on Artificial Intelligence*, ed. B. Neumann (Wiley, 1992) pp. 102–106.

[55]

L.M. Pereira, J.J. Alferes and J.N. Aparício, Nonmonotonic reasoning with well founded semantics, in: *Proc. of 8th ICLP*, ed. K. Furukawa (MIT Press, 1991) pp. 475–489.

[56]

L.M. Pereira, J.N. Aparício and J.J. Alferes, Non-monotonic reasoning with logic programming, Journal of Logic Programming 17(2,3,4), Special issue on Nonmonotonic Reasoning (1993) 227–263.

MATHMathSciNetCrossRefGoogle Scholar[57]

J. Pinto and R. Reiter, Temporal reasoning in logic programming: A case for the situation calculus, in: *Proc. of ICLP 93* (MIT Press) pp. 203–221.

[58]

D. Poole, Representing diagnosis knowledge, Annals of Math. and AI 11 (1994) 33–50.

MATHMathSciNetGoogle Scholar[59]

T. Przymusinski, On the declarative semantics of stratified deductive databases and logic programs, in: *Foundations of Deductive Databases and Logic Programming*, ed. J. Minker (Morgan Kaufmann, 1987) pp. 193–216.

[60]

J.A. Reggia, D.S. Nau and Y. Wang, A formal model of diagnostic inference I: Problem formulation and decomposition, Info. Sci 37 (1985) 227–256.

MATHCrossRefGoogle Scholar[61]

R. Reiter, A logic for default reasoning, Artificial Intelligence 13 (1980) 81–132.

MATHMathSciNetCrossRefGoogle Scholar[62]

R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence 32(1) (1987) 57–96.

MATHMathSciNetCrossRefGoogle Scholar[63]

R. Reiter, The frame problem in the situation calculus: A simple solution (sometimes) and a completeness result for goal regression, in:

*Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy*, ed. V. Lifschitz (Academic Press, San Diego, CA, 1991) pp. 359–380.

Google Scholar[64]

E. Sandewall, Filter preferential entailment for the logic of action in almost continuous worlds, in: *Proc. of IJCAI 89* (Morgan Kaufmann, 1989).

[65]

E. Sandewall, in: *Features and Fluents: The Representation of Knowledge about Dynamic Systems*, Vol. 1 (Oxford University Press, 1994).

[66]

E. Sandewall, The range of applicability of some non-monotonic logics for strict inertia, Journal of Logic and Computation 4(5) (1994) 581–615.

MATHMathSciNetGoogle Scholar[67]

K. Satoh and N. Iwayama, A query evaluation method for abductive logic programming, in: *Logic Programming: Proc. of 1992 Int. Joint Conference and Symposium*, ed. Apt (1992) pp. 671–685.

[68]

Y. Shoham, *Reasoning about Change* (MIT Press, 1987).

[69]

M. Shanahan, Prediction is deduction but explanation is abduction, in: *Proc. IJCAI 89* (Morgan Kaufmann, 1989) pp. 1055–1061.

[70]

M. Shanahan, Explanation in the situation calculus, in: *Proc. of IJCAI 93* (Morgan Kaufmann, 1993) pp. 160–165.

[71]

L.A. Stein and L. Morgenstern, Motivated action theory: a formal theory of causal reasoning, Artificial Intelligence 71 (1994) 1–42.

MATHMathSciNetCrossRefGoogle Scholar[72]

A. Van Gelder, K. Ross and J.S. Schlipf, The well-founded semantics for general logic programs, J. ACM 38 (1991) 620–650.

MATHMathSciNetCrossRefGoogle Scholar[73]

G. Wagner, *Vivid Logic*, Lecture Notes in Artificial Intelligence 764 (Springer, 1994).