Skip to main content
Log in

Gaussian Limiting Behavior of the Rescaled Solution to the Linear Korteweg–de Vries Equation with Random Initial Conditions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We analyze the asymptotic behavior of the rescaled solution to the linear Korteweg–de Vries equation when the initial conditions are supposed to be random and weakly dependent. By means of the method of moments we prove the Gaussianity of the limiting process and we present its correlation function. The same technique is applied to the analysis of another third-order heat-type equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Accetta and E. Orsingher, Asymptotic expansion of fundamental solutions of higher order heat equations, Random Operators and Stoch. Equ. 5(3):217–226 (1997).

    Google Scholar 

  2. S. Albeverio, S. A. Molchanov, and D. Surgailis, Stratified structure of the Universe and Burgers' equation: a probabilistic approach, Prob. Theory and Rel. Fields 100:457–484 (1994).

    Google Scholar 

  3. V. V. Anh and N. N. Leonenko, Non-Gaussian scenarios for the heat equation with singular initial conditions, Stoch. Proc. Applic. 84:91–114 (1999).

    Google Scholar 

  4. M. Avellaneda and A. Majda, Mathematical models with exact renormalisation for turbulent transport, Comm. Math. Phys. 131:381–429 (1990).

    Google Scholar 

  5. N. Bleistein and R. A. Handelsman, Asymptotic Expansions of Integrals (Dover Publ. Inc., New York, 1986).

    Google Scholar 

  6. P. Breuer and P. Major, Central theorem for non-linear functionals of Gaussian fields, Journ. Multivariate Anal. 13:425–441 (1983).

    Google Scholar 

  7. A. V. Bulinski and S. A. Molchanov, Asymptotic Gaussianness of solutions to the Burgers' equation with random initial data, Theory Prob. Appl. 36:217–235 (1991).

    Google Scholar 

  8. Yu. L. Daletsky, V. Yu. Krylov, R. A. Minlos, and V. N. Sudakov, Functional integration and measures in functional spaces, Proc. Fourth All Union Math. Congr., Leningrad 2:282–292 1961) (in Russian).

    Google Scholar 

  9. I. I. Deriev and N. N. Leonenko, Limit Gaussian behaviour of the solutions of the multi-dimensional Burgers' equation with weak-dependent initial conditions, Acta Appl. Math. 47:178 (1997).

    Google Scholar 

  10. P. G. Drazin and R. S. Johnson, Solitons: An Introduction (Cambridge University Press, Cambridge, 1989).

    Google Scholar 

  11. T. Funaki, Probabilistic construction of the solutions of some higher-order parabolic differential equations, Proc. Japan Acad. A 55:176–179 (1979).

    Google Scholar 

  12. C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Springer-Verlag, Berlin, 1985).

    Google Scholar 

  13. G. Gaudron, Scaling laws and convergence for advection-diffusion equation, Ann. Appl. Prob. 8:649–663 (1998).

    Google Scholar 

  14. K. J. Hochberg, A signed measure on path space related to Wiener measure, Ann. Probab. 6:433–458 (1978).

    Google Scholar 

  15. K. J. Hochberg and E. Orsingher, The arc-sine law and its analogs for processes governed by signed and complex measures, Stoch. Proc. Appl. 52:273–292 (1994).

    Google Scholar 

  16. K. J. Hochberg and E. Orsingher, Composition of stochastic processes governed by higher-order parabolic and hyperbolic equation, Journ. Theor. Prob. 9:511–532 (1996).

    Google Scholar 

  17. A. V. Ivanov and N. N. Leonenko, Statistical Analysis of Random Fields (Kluwer Academic Publishers, Dordrecht, 1989).

    Google Scholar 

  18. V. Yu. Krylov, Some properties of the distribution corresponding to the equation ∂u/∂t=(-1)q+12pu/∂x2p, Soviet Math. Dokl. 1:260–263 (1960).

    Google Scholar 

  19. N. N. Leonenko, Limit Theorems for Random Fields with Singular Spectrum (Kluwer Academic Publishers, Dordrecht, 1999).

    Google Scholar 

  20. N. N. Leonenko and W. A. Woyczynski, Exact parabolic asymptotics for singular n-D Burgers' random fields: Gaussian approximation, Stoch. Proc. Appl. 76:141–165 (1998a).

    Google Scholar 

  21. N. N. Leonenko and W. A. Woyczynski, Scaling limits of the heat equation for singular non-Gaussian data, Journ. Stat. Phys. 91(1-2):423–438 (1998b).

    Google Scholar 

  22. Myiamoto, An extension of certain quasi-measures, Proc. Japan Ac. Coll. II-11:70–74 (1966).

    Google Scholar 

  23. A. Orlowski and K. Sobczyk, Solitons and shock waves under random external noise, Rep. Math. Phys. 27:59–71 (1989).

    Google Scholar 

  24. E. Orsingher, Processes governed by signed measures connected with third-order “heat-type” equations, Lith. Math. J. 31:321–334 (1991).

    Google Scholar 

  25. E. Orsingher and X. Zhao, Iterated processes and their applications to higher order differential equations, Acta Math. Sinica 15(2):173–180 (1999).

    Google Scholar 

  26. N. E. Ratanov, A. G. Shuhov, and Yu. M. Suhov, Stabilization of the statistical solutions of the parabolic equation, Acta Appl. Math. 22:103–115 (1991).

    Google Scholar 

  27. M. S. Taqqu, Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long-range dependence, Z. Wahrsh. verw. Gebiete. 40:203–238 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beghin, L., Knopova, V.P., Leonenko, N.N. et al. Gaussian Limiting Behavior of the Rescaled Solution to the Linear Korteweg–de Vries Equation with Random Initial Conditions. Journal of Statistical Physics 99, 769–781 (2000). https://doi.org/10.1023/A:1018687327580

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018687327580

Navigation