1.

F. Barahona, On the computational complexity of Ising spin glass models, *J. Phys. A*
**15**:3241–3253 (1982).

2.

R. M. Brady and R. C. Ball, Fractal growth of copper electrodeposits, *Nature*
**309**:225–229 (1984).

3.

M. Bramson and J. L. Lebowitz, Asymptotic behavior of densities for two-particle annihilating random walks, *J. Stat. Phys.*
**62**:297–372 (1991).

4.

A. Condon, A theory of strict P-completeness, STACS 1992, in *Lecture Notes in Computer Science*
**577**:33–44 (1992).

5.

D. Dhar, The Abelian sandpile and related models, *Physica A*
**263**:4–25 (1999).

6.

P. Diaconis and W. Fulton, A growth model, a game, an algebra, Lagrange inversion, and characteristic classes, *Rend. Sem. Mat. Univ. Pol. Torino*
**49**:95–119 (1991).

7.

R. M. D'souza and N. H. Margolus, A thermodynamically reversible generalization of diffusion-limited aggregation, *Phys. Rev. E.*
**60**:264–274 (1999).

8.

F. Family, B. R. Masters, and D. E. Platt, Fractal pattern formation in human retinal vessels, *Physica D*
**38**:98–103 (1989).

9.

J. Gravner and J. Quastel, Internal DLA and the Stefan problem, *Ann. Prob.*, to appear.

10.

R. Greenlaw, H. J. Hoover, and W. L. Ruzzo, *Limits to Parallel Computation: P-Com-pleteness Theory* (Oxford University Press, 1995).

11.

D. Griffeath and C. Moore, Life without death is P-complete, *Complex Systems*
**10**: 437–447 (1996).

12.

H. G. E. Hentschel and A. Fine, Diffusion-regulated control of cellular dendritic morphogenesis, *Proc. R. Soc. Lond. B*
**263**:1–8 (1996).

13.

D. E. Knuth, *Seminumerical Algorithms* (Addison-Wesley, 1981).

14.

J. Krug and P. Meakin, Kinetic roughening of Laplacian fronts, *Phys. Rev. Lett.*
**66**:703 (1991).

15.

H. Larralde, P. Trunfio, S. Havlin, H. E. Stanley, and G. H. Weiss, Territory covered by N diffusing particles, *Nature*
**355**:423–426 (1992).

16.

G. Lawler, M. Bramson, and D. Griffeath, Internal diffusion limited aggregation, *Ann. Prob.*
**20**:2117-2140 (1992).

17.

G. Lawler, Subdiffusive fluctuations for internal diffusion limited aggregation, *Ann. Prob.*
**23**:71–86 (1995).

18.

K. Lindgren and M. G. Nordahl, Universal computation in simple one-dimensional cellular automata, *Complex Systems*
**4**:299–318 (1990).

19.

J. Machta, The computational complexity of pattern formation, *J. Stat. Phys.*
**70**:949 (1993).

20.

J. Machta and R. Greenlaw, The parallel complexity of growth models, *J. Stat. Phys.*
**77**:755 (1994).

21.

J. Machta and R. Greenlaw, The computational complexity of generating random fractals, *J. Stat. Phys.*
**82**:1299 (1996).

22.

J. G. Masek and D. L. Turcotte, A diffusion-limited aggregation model for the evolution of drainage networks, *Earth and Planetary Science Letters*
**119**:379–386 (1993).

23.

E. W. Mayr and A. Subramanian, The complexity of circuit value and network stability, *J. Comput. System Sci.*
**44**:302–323 (1992).

24.

P. Meakin and J. M. Deutch, The formation of surfaces by diffusion-limited annihilation, *J. Chem. Phys.*
**85**:2320 (1986).

25.

A. M. Meirmanov, *The Stefan Problem* (Walter de Gruyter, Berlin, 1992).

26.

C. Moore and M. Nilsson, The computational complexity of sandpiles, *J. Stat. Phys.*
**96**:205–224 (1999).

27.

C. Moore, Majority-Vote cellular automata, Ising dynamics, and P-completeness, *J. Stat. Phys.*
**88**:795–805 (1997).

28.

C. Moore and M. Nordahl, Predicting lattice gases is P-complete (Santa Fe Institute Working Paper 97-04-034).

29.

C. Moore, Quasi-linear cellular automata, *Physica D*
**103**:100–132 (1997); Proceedings of the International Workshop on Lattice Dynamics.

30.

C. Moore, Predicting non-linear cellular automata quickly by decomposing them into linear ones, *Physica D*
**111**:27–41 (1998).

31.

K. Moriarty and J. Machta, The computational complexity of the Lorentz lattice gas, *J. Stat. Phys.*
**87**:1245 (1997).

32.

K. Moriarty, J. Machta, and R. Greenlaw, Optimized parallel algorithm and dynamic exponent for diffusion-limited aggregation, *Phys. Rev. E*
**55**:6211 (1997).

33.

L. Niemeyer, L. Pietronero, and H. J. Wiesmann, Fractal dimension of dielectric breakdown, *Phys. Rev. Lett*
**52**:1033–1036 (1984).

34.

J. Nittmann and H. E. Stanley, Tip splitting without interfacial tension and dendritic growth patterns arising from molecular anisotropy, *Nature*
**321**:663 (1986).

35.

J. Nittmann and H. E. Stanley, Non-deterministic approach to anisotropic growth pat-terns with continuously tunable morphology: the fractal properties of some real snow-flakes, *J. Phys. A*
**20**: L1185 (1987).

36.

C. H. Papadimitriou, *Computational Complexity* (Addison-Wesley, 1994).

37.

L. Paterson, Diffusion-limited aggregation and two-fluid displacement in porous media, *Phys. Rev. Lett.*
**52**:1621 (1984).

38.

C. Tang, Diffusion-limited aggregation and the Saffman-Taylor problem, *Phys. Rev. A*
**31**: 1977 (1985).

39.

D. Toussaint and F. Wilczek, Particle-antiparticle annihilation in diffusive motion, *J. Chem. Phys.*
**78**:2642–2647 (1983).

40.

T. Witten and L. Sander, Diffusion-limited aggregation: a kinetic critical phenomenon, *Phys. Rev. Lett.*
**47**:1400-1403 (1981).