, Volume 6, Issue 3, pp 477-493

Islands: stability, diversity, conservation

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Islands present both a diversity and a stability ‘paradox’. They are often highly species-poor but have considerable biological interest in terms of extraordinary endemic genera and taxonomically isolated groups. They appear to be stable, as in some cases these organisms have persisted for many millions of years, and having an oceanic climate, extreme climatic events may be comparatively rare. However, when subject to extrinsic (anthropogenic) disturbance they do not appear to be stable, but often suffer catastrophic ecological change. These apparent paradoxes are resolved when it is realized that all these features are consequences of the same island characteristics: biotic isolation and oceanicity. As a result of these two characteristics, far oceanic islands are quantitatively different from continental systems in the nature of their ecological processes, which appear to give rise to an extreme punctuated equilibrium model of evolutionary change. Endemics may be ancient relict endemics displaying prolonged stasis and persistence, or products of adaptive radiation representing rapid punctuational events. A process-based definition of a relict endemic (palaeoendemic) is one whose founding lineage (i.e. the original continental source taxon) has not left any descendents. A corollary of this definition is that the time of divergence between an endemic and its continental sister-group should predate the colonization of the island by the now endemic lineage. An example is Dicksonia arborescens which has been on St Helena for at least 9 Myrs and no longer occurs in the likely source area of Africa. These relict endemics, frequent on islands, are important as the last remnants of tranches of biodiversity that have vanished elsewhere. Island conservation strategies require an integrated understanding of both sides of the diversity and stability paradox so that both island processes and island organisms can be conserved.