, Volume 122, Issue 3, pp 451-462

Number of crosses and population size for participatory and classical plant breeding

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

In the breeding of self-pollinating crops, crossing creates variation upon which selection is exerted. If the value of crosses cannot be predicted then this uncertainty means that many crosses need to be made. However, since there is a limit to the capacity of a breeding programme, more numerous crosses result in each cross having a small population size, fewer progenies in later generations and a lower probability of recovering good genotypes from each cross. Published theory on the optimum number of crosses in a plant breeding programme, for a predominantly self-pollinating crop, usually assumes that all crosses are equal value. This overestimates the number of crosses required. When the optimum size of a population in a favourable cross is considered, theory predicts that very large populations are desirable. The required population size is even larger if linkage of loci controlling different traits is also considered. Hence, in an inbreeding crop, one possible strategy is to select a small number of crosses that are considered favourable and produce large populations from them to increase the probability of recovering superior genotypes. In an out breeding crop, the analogy is a few composites with large population sizes. This low-cross-number strategy is ideally suited to the particular constraints and advantages of participatory plant breeding. Such an approach, although not essential, may still be advantageous in classical breeding. When a breeding programme is based on few crosses, which parents are chosen is crucial and farmer participatory methods are highly effective in narrowing the choice. Modified bulk population breeding methods, and recurrent selection are desirable strategies in the participatory plant breeding of self-pollinating crops when combined with a low-cross-number approach.

This revised version was published online in August 2006 with corrections to the Cover Date.