, Volume 153, Issue 1-2, pp 153-167

The influence of anthropogenic disturbances on the structure of arboreal arthropod communities

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

In the framework of our research, aimed at understanding the processes structuring tropical arthropod communities, we investigated the changes occurring in tree crown communities of forests of different disturbance levels. These were a mixed dipterocarp primary lowland rain forest in Kinabalu National Park (in Sabah, Malaysia) and, some kilometres away, three forests of regeneration periods 5, 15, and 40 years following a clear-cut. These disturbed forest sites were adjacent to one another and merged into mature forest. From each forest at least ten individuals of one tree species were sampled using the fogging method. In the primary forest relative proportions of some arthropod taxa differed on the ordinal and familial level significantly within trees. The dominance of Formicidae was characteristic as was the almost complete lack of less mobile arthropods such as Lepidoptera larvae. In the five-year- old forest, differences in relative proportions among most taxa had almost disappeared. Formicidae abundances had declined drastically which coincided with an increase of Lepidoptera larvae. With progressing forest succession, arthropod communities increasingly converged on the pattern of primary forest, and total ant abundance as well as diversity increased significantly. Ant communities in the most disturbed forest were of low structural complexity, and to a large degree predictable in species arrangement, but became more and more unpredictable as the complexity of the forest increased. Several species of Coleoptera and non-formicine Hymenoptera occurred in high numbers in the youngest forest, contrasting with the mature forest where all species were typically rare. These changes may indicate a change in the structuring mechanisms from predominantly deterministic processes in disturbed forests to stochastic processes in mature forest.