[1]

J. Abellan and S. Moral, A non-specificity measure for convex sets of probability distributions, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 8(3) (2000) 357-367.

[2]

A. Chateauneuf and J.Y. Jaffray, Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion, Mathematical Social Sciences 17 (1989) 263-283.

[3]

G. Choquet, Theory of capacities, Annales de L'Institut Fourier 5 (1953-1954) 131-295.

[4]

R. Christensen, *Entropy Minimax Sourcebook* (Entropy Limited, Lincoln, MA, 1980-1981).

[5]

R. Christensen, Entropy minimax multivariate statistical modeling-I: Theory, International Journal of General Systems 11(3) (1985) 231-277.

[6]

R. Christensen, Entropy minimax multivariate statistical modeling-II: Applications, International Journal of General Systems 12(3) (1986) 227-305.

[7]

G. De Cooman, Possibility theory, International Journal of General Systems 25(4) (1997) 291-371.

[8]

D. Dubois and H. Prade, A note on measures of specificity for fuzzy sets, International Journal of General Systems 10(4) (1985) 279-283.

[9]

D. Dubois and H. Prade, *Possibility Theory* (Plenum, New York, 1988).

[10]

D. Dubois and H. Prade, Rough fuzzy sets and fuzzy rough sets, International Journal of General Systems 17(2-3) (1990) 191-209.

[11]

D. Dubois, J. Lang and H. Prade, Possibilistic logic, in: eds. D.M. Gabbay, et al., *Handbook of Logic in Artificial Intelligence and Logic Programming* (Clarendon, Oxford, UK, 1994), pp. 439-513.

[12]

J.F. Geer and G.J. Klir, A mathematical analysis of information preserving transformations between probabilistic and possibilistic formulations of uncertainty, International Journal of General Systems 20(2) (1992) 143-176.

[13]

P.R. Halmos, *Measure Theory* (Van Nostrand, Princeton, NJ, 1950).

[14]

R.V.L. Hartley, Transmission of information, The Bell SystemTechnical Journal 7(3) (1928) 535-563.

[15]

M. Higashi and G.J. Klir, Measures of uncertainty and information based on possibility distributions, International Journal of General Systems 9(1) (1983) 43-58.

[16]

G.E. Hughes and M.J. Cresswell, *A New Introduction to Modal Logic* (Routledge, London and New York, 1996).

[17]

E.T. Jaynes, in: *Papers on Probability, Statistics and Statistical Physics*, ed. R.D. Rosenkrantz (Reidel, Dordrecht, 1983).

[18]

J.N. Kapur, *Maximum Entropy Models in Science and Engineering* (Wiley, New York, 1989).

[19]

G.J. Klir, A principle of uncertainty and information invariance, International Journal of General Systems 17(2-3) (1990) 249-275.

[20]

G.J. Klir, Principles of uncertainty: What are they? Why do we need them?, Fuzzy Sets and Systems 74(1) (1995) 15-31.

[21]

G.J. Klir, On fuzzy-set interpretation of possibility theory, Fuzzy Sets and Systems 108(3) (1999) 263-273.

[22]

G.J. Klir and M. Mariano, On the uniqueness of possibilistic measure of uncertainty and information, Fuzzy Sets and Systems 24(2) (1987) 197-219.

[23]

G.J. Klir and B. Parviz, Probability-possibility transformations: A comparison, International Journal of General Systems 21(3) (1992) 291-310.

[24]

G.J. Klir and M.J. Wierman, *Uncertainty-Based Information: Elements of Generalized Information Theory* (Physica-Verlag/Springer, Heidelberg and New York, 1999).

[25]

G.J. Klir and B. Yuan, *Fuzzy Sets and Fuzzy Logic: Theory and Applications* (Prentice Hall, Upper Saddle River, NJ, 1995).

[26]

G.J. Klir and B. Yuan, On nonspecificity of fuzzy sets with continuous membership functions, in: *Proc. 1995 International Conf. on Systems, Man, and Cybernetics*, Vancouver (1995).

[27]

G.J. Klir and B. Yuan, eds., *Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A. Zadeh* (World Scientific, Singapore, 1996).

[28]

A.N. Kolmogorov, *Foundations of the Theory of Probability* (Chelsea, New York, 1950), first published in German in 1933.

[29]

H.E. Kyburg, Bayesian and non-Bayesian evidential updating, Artificial Intelligence 31 (1987) 271-293.

[30]

H.E. Kyburg and M. Pittarelli, Set-based Bayesianism, IEEE Transactions on Systems, Man, and Cybernetics A 26(3) (1996) 324-339.

[31]

Y. Pan and G.J. Klir, Bayesian inference based on interval probabilities, Journal of Intelligent and Fuzzy Systems 5(3) (1997) 193-203.

[32]

Z. Pawlak, *Rough Sets: Theoretical Aspects of Reasoning About Data* (Kluwer, Boston, 1991).

[33]

H. Prade, Modal semantics and fuzzy set theory, in: *Fuzzy Set and Possibility Theory: Recent Developments*, ed. R.R. Yager (Pergamon Press, Oxford, 1982) pp. 232-246.

[34]

A. Ramer, Uniqueness of information measure in the theory of evidence, Fuzzy Sets and Systems 24(2) (1987) 183-196.

[35]

A. Ramer, Euclidean specificity: two solutions and few problems, in: *Proc. World Congress of the International Fuzzy Systems Assoc.*, Vol. 4, Prague (1997) 268-271.

[36]

A. Ramer, Nonspecificity in ℝ^{n}, International Journal of General Systems (2001) in press.

[37]

A. Rènyi, *Probability Theory* (North-Holland, Amsterdam, 1970) chapter IX, pp. 540-616.

[38]

G. Shafer, *A Mathematical Theory of Evidence* (Princeton Univ. Press, Princeton, NJ, 1976).

[39]

C.E. Shannon, The mathematical theory of communication, The Bell System Technical Journal 27 (1948) 379-423, 623-656.

[40]

R.M. Smith, Generalized information theory: resolving some old questions and opening some new ones, Ph.D. dissertation, Binghamton University-SUNY, Binghamton (2000).

[41]

P. Walley, *Statistical Reasoning With Imprecise Probabilities* (Chapman and Hall, London, 1991).

[42]

P. Walley, Towards a unified theory of imprecise probability, International Journal of Approximate Reasoning 24(2-3) (2000) 125-148.

[43]

Z. Wang and G.J. Klir, *Fuzzy Measure Theory* (Plenum, New York, 1992).

[44]

K. Weichselberger and S.K. Pöhlmann, *A Methodology for Uncertainty in Knowledge-Based Systems* (Springer, New York, 1990).

[45]

R.R. Yager, A foundation for a theory of possibility, Journal of Cybernetics 10(1-3) (1980) 77-204.

[46]

R.R. Yager, On the Dempster-Shafer framework and new combination rules, Information Sciences 41 (1987) 93-137.

[47]

R.R. Yager et al., *Fuzzy Sets and Applications-Selected Papers by L.A. Zadeh* (Wiley, New York, 1987).

[48]

J. Yen, Generalizing the Dempster-Shafer theory to fuzzy sets, IEEE Transactions on Systems, Man, and Cybernetics 20(3) (1990) 559-570.

[49]

L.A. Zadeh, Fuzzy sets, Information and Control 8(3) (1965) 338-353.

[50]

L.A. Zadeh, Probability measures of fuzzy events, Journal of Mathematical Analysis and Applications 23 (1968) 421-427.

[51]

L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems 1(1) (1978) 3-28.

[52]

L.A. Zadeh, Soft computing and fuzzy logic, IEEE Software 11(6) (1994) 48-56.