On Orthogonal Double Covers of Graphs
 HansDietrich O. F. Gronau,
 Martin Grüttmüller,
 Sven Hartmann,
 Uwe Leck,
 Volker Leck
 … show all 5 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
An orthogonal double cover (ODC) is a collection of n spanning subgraphs(pages) of the complete graph K _{n} such that they cover every edge of the completegraph twice and the intersection of any two of them contains exactly one edge. If all the pages are isomorphic tosome graph G, we speak of an ODC by G. ODCs have been studied for almost 25 years, and existenceresults have been derived for many graph classes. We present an overview of the current state of research alongwith some new results and generalizations. As will be obvious, progress made in the last 10 years is in many waysrelated to the work of Ron Mullin. So it is natural and with pleasure that we dedicate this article to Ron, on theoccasion of his 65th birthday.
 P. Adams, D. E. Bryant and A. Khodkar, On the existence of supersimple designs with block size 4, Aequationes Math., Vol. 51, No.3 (1996) pp. 230–246.
 B. Alspach, K. Heinrich and G. Liu, Orthogonal factorizations of graphs, In (J. H. Dinitz and D. R. Stinson, eds.), Contemporary Design Theory, Chapter 2. Wiley, New York (1992).
 B. Alspach, K. Heinrich and M. Rosenfeld, Edge partitions of the complete symmetric directed graph and related designs, Israel J. Math., Vol. 40, No.2 (1981) pp. 118–128.
 B. A. Anderson and P. A. Leonard, A class of selforthogonal 2–sequencings, Des. Codes Cryptogr., Vol. 1, No.2 (1991) pp. 149–181.
 F. E. Bennett and L. S Wu, On minimum matrix representation of closure operations, Discrete Appl. Math., Vol. 26, No.1 (1990) pp. 25–40.
 T. Beth, D. Jungnickel and H. Lenz, Design Theory, Bibliographisches Institut, Mannheim (1985).
 C. Bey, S. Hartmann, U. Leck and V. Leck, On orthogonal double covers by superextendable cycles, J. Combin. Des., Vol. 10 (2002).
 J. Bosák, Decompositions of Graphs, Kluwer Academic Publishers Group, Dordrecht (1990).
 A. E. Brouwer, H. Hanani and A. Schrijver, Group divisible designs with blocksize four, Discrete Math., Vol. 20, No.1 (1977/1978) pp. 1–10.
 D. E. Bryant and A. Khodkar, On orthogonal double covers of graphs, Des. Codes Cryptogr., Vol. 13, No.2 (1998) pp. 103–105.
 P. J. Cameron, SGDs with doubly transitive automorphism group, J. Graph Theory, Vol. 32, No.3 (1999) pp. 229–233.
 K. Chen, On the existence of supersimple (v, 4, 3)BIBDs, J. Combin. Math. Combin. Comput., Vol. 17 (1995) pp. 149–159.
 B. C. Chong and K. M. Chan, On the existence of normalized Room squares, Nanta Math., Vol. 7, No.1 (1974) pp. 8–17.
 M. S. Chung and D. B. West, The pintersection number of a complete bipartite graph and orthogonal double coverings of a clique, Combinatorica, Vol. 14, No.4 (1994) pp. 453–461.
 C. J. Colbourn and J. H. Dinitz (eds.), The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL (1996).
 M. Dehon, On the existence of 2–designs S _{λ}(2, 3, v) without repeated blocks, Discrete Math., Vol. 43, No.2–3 (1983) pp. 155–171.
 J. Demetrovics, Z. Füredi and G. O. H. Katona, Minimum matrix representation of closure operations, Discrete Appl. Math., Vol. 11, No.2 (1985) pp. 115–128.
 J. Demetrovics and G. O. H. Katona, Extremal combinatorial problems in relational data base, In Fundamentals of Computation Theory, Springer, Berlin (1981) pp. 110–119.
 J. H. Dinitz, Lower Bounds for the Number of Pairwise Orthogonal Symmetric Latin Squares, Ph.D. Thesis, Ohio State University (1980).
 J. H. Dinitz, Room ncubes of low order, J. Austral. Math. Soc. Ser. A, Vol. 36, No.2 (1984) pp. 237–252.
 J. H. Dinitz and D. R. Stinson, Room squares and related designs, In (J. H. Dinitz and D. R. Stinson, eds.), Contemporary Design Theory, Chapter 5, J. Wiley, New York (1992) pp. 137–204.
 R. ElShanawany and H.D. O. F. Gronau, Orthogonal Double Covers of Kn,n, forthcoming.
 R. ElShanawany, H.D. O. F. Gronau and M. Grüttmüller, Orthogonal double covers of Kn,n by small graphs, Discrete Appl. Math., to appear.
 P. Erdos, Beweis eines Satzes von Tschebyschef, Acta Sci. Math. (Szeged), Vol. 5 (1930–1932) pp. 194–198.
 D. Froncek and A. Rosa, Symmetric graph designs on friendship graphs, J. Combin. Des., Vol. 8, No.3 (2000) pp. 201–206.
 J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., Vol. 5, No.1, Dynamic Survey, Vol. 6 (1998) p. 43 (electronic), updated (Sep. 16, 2000) p. 79.
 B. Ganter and H.D. O. F. Gronau, Two conjectures of Demetrovics, Füredi and Katona, concerning partitions, Discrete Math., Vol. 88, No.2–3 (1991) pp. 149–155.
 B. Ganter, H.D. O. F. Gronau and R. C. Mullin, On orthogonal double covers of Kn, Ars Combin., Vol. 37 (1994) pp. 209–221.
 A. Granville, H.D. O. F. Gronau and R. C. Mullin, On a problem of Hering concerning orthogonal covers of Kn, J. Combin. Theory Ser. A, Vol. 72, No.2 (1995) pp. 345–350.
 H.D. O. F. Gronau and R. C. Mullin, On a conjecture of Demetrovics, Füredi and Katona, unpublished manuscript.
 H.D. O. F. Gronau and R. C. Mullin, On supersimple 2–(v, 4, λ) designs, J. Combin. Math. Combin. Comput., Vol. 11 (1992) pp. 113–121.
 H.D. O. F. Gronau, R. C. Mullin and A. Rosa, Orthogonal double covers of complete graphs by trees, Graphs Combin., Vol. 13, No.3 (1997) pp. 251–262.
 H.D. O. F. Gronau, R. C. Mullin, A. Rosa and P. J. Schellenberg, Symmetric graph designs, Graphs Combin., Vol. 16, No.1 (2000) pp. 93–102.
 H.D. O. F. Gronau, R. C. Mullin and P. J. Schellenberg, On orthogonal double covers of Kn and a conjecture of Chung and West, J. Combin. Des., Vol. 3, No.3 (1995) pp. 213–231.
 H. Harborth, private communication.
 S. Hartmann, Asymptotic results on suborthogonal Gdecompositions of complete digraphs, Discrete Appl. Math., Vol. 95 (1999) pp. 311–320.
 S. Hartmann, Orthogonal decompositions of complete digraphs, Graphs Combin., Vol. 18 (2002).
 S. Hartmann, On simple and supersimple transversal designs, J. Combin. Des., Vol. 8, No.5 (2000) pp. 311–320.
 S. Hartmann, Orthogonal Double Covers by Amalgamated Graph Families, Preprint, University of Rostock, Dept. of Mathematics, forthcoming.
 S. Hartmann, Superpure digraph designs, J. Combin. Des., Vol. 10 (2002) pp. 239–255.
 S. Hartmann, Combinatorial Problems Motivated by Database Theory, Habilitationsschrift, Universität Rostock, (2001).
 S. Hartmann, U. Leck and V. Leck, More Orthogonal Double Covers of Complete Graphs by Hamiltonian Paths, Preprint, University of Rostock, Dept. of Mathematics, forthcoming.
 S. Hartmann, U. Leck and V. Leck, A conjecture on orthogonal double covers by paths, Congr. Numer., Vol. 140 (1999) pp. 187–193.
 S. Hartmann and U. Schumacher, Orthogonal double covers of general graphs, Discrete Appl. Math., to appear.
 S. Hartmann and U. Schumacher, Suborthogonal double covers of complete graphs, Congr. Numer., Vol. 147 (2000) pp. 33–40.
 K. Heinrich, Graph decompositions and designs, In (C. J. Colbourn and J. H. Dinitz, eds.), The CRC Handbook of Combinatorial Designs, Chapter IV.22, CRC Press, Boca Raton (1996).
 K. Heinrich and G. M. Nonay, Path and cycle decompositions of complete multigraphs, Ann. Discrete Math., Vol. 27 (1985) pp. 275–286.
 F. Hering, Block designs with cyclic block structure, Ann. Discrete Math., Vol. 6 (1980) pp. 201–214.
 F. Hering, Balanced pairs, Ann. Discrete Math., Vol. 20 (1984) pp. 177–182.
 F. Hering and M. Rosenfeld, Problem number 38. In (K. Heinrich, ed.), Unsolved Problems: Summer Research Workshop in Algebraic Combinatorics, Simon Fraser University (1979).
 J. D. Horton and G. M. Nonay, Selforthogonal Hamilton path decompositions, Discrete Math., Vol. 97, No.1–3 (1991) pp. 251–264.
 A. Khodkar, Various supersimple designs with block size four, Australas. J. Combin., Vol. 9 (1994) pp. 201–210.
 U. Leck, A class of 2–colorable orthogonal double covers of complete graphs by hamiltonian paths, Graphs Combin., Vol. 18 (2002) pp. 155–167.
 U. Leck and V. Leck, On orthogonal double covers by trees, J. Combin. Des.,Vol. 5, No.6 (1997) pp. 433–441.
 U. Leck and V. Leck, Orthogonal double covers of complete graphs by trees of small diameter, Discrete Appl. Math., Vol. 95 (1999) pp. 377–388.
 V. Leck, Orthogonale Doppelüberdeckungen des Kn, Diploma Thesis, University of Rostock, Dept. of Mathematics (1996).
 V. Leck, On orthogonal double covers by Hamilton paths, Congr. Numer., Vol. 135 (1998) pp. 153–157.
 V. Leck, Orthogonal Double Covers of Kn, Ph.D. Thesis, University of Rostock (2000).
 S. Lins and P. J. Schellenberg, The existence of skew strong starters in Z _{16k } ^{2} _{+1}: A simpler proof, Ars. Combin., Vol. 11 (1981) pp. 123–129.
 H. F. MacNeish, Euler squares, Ann. Math. (NY), Vol. 23 (1922) pp. 221–227.
 R. C. Mullin and E. Nemeth, An existence theorem for room squares, Canad. Math. Bull., Vol. 12 (1969) pp. 493–497.
 A. Rausche, On the existence of special block designs, Rostock. Math. Kolloq., Vol. 35 (1988) pp. 13–20.
 U. Schumacher, Suborthogonal double covers of the complete graph by stars, Discrete Appl. Math., Vol. 95 (1999) pp. 439–444.
 R. G. Stanton and R. C. Mullin, Construction of room squares, Ann. Math. Statist., Vol. 39 (1968) pp. 1540–1548.
 A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. USA, Vol. 34 (1948) pp. 204–207.
 R. M. Wilson, An existence theory for pairwise balanced designs. II, The structure of PBDclosed sets and the existence conjectures, J. Combin. Theory Ser. A, Vol. 13 (1972) pp. 246–273.
 R.M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph, In Proceedings of the Fifth British Combinatorial Conference, Univ. Aberdeen, Aberdeen (1975) pp. 647–659; Congressus Numerantium, Vol. XV; Utilitas Math., Winnipeg, Man. (1976).
 Title
 On Orthogonal Double Covers of Graphs
 Journal

Designs, Codes and Cryptography
Volume 27, Issue 12 , pp 4991
 Cover Date
 20021001
 DOI
 10.1023/A:1016546402248
 Print ISSN
 09251022
 Online ISSN
 15737586
 Publisher
 Kluwer Academic Publishers
 Additional Links
 Topics
 Keywords

 ODC
 orthogonal double covers
 graph decomposition
 selforthogonal factorization
 Industry Sectors
 Authors

 HansDietrich O. F. Gronau ^{(1)}
 Martin Grüttmüller ^{(1)}
 Sven Hartmann ^{(2)}
 Uwe Leck ^{(1)}
 Volker Leck ^{(1)}
 Author Affiliations

 1. Universität Rostock, Germany
 2. Universität Rostock, Germany