, Volume 22, Issue 5-6, pp 369-398

Neogene-Quaternary contourite and related deposition on the West Shetland Slope and Faeroe-Shetland Channel revealed by high-resolution seismic studies

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The Neogene and Quaternary sediments of the Faeroe-Shetland Channel and West Shetland shelf and slope rest upon a major regional unconformity, the Latest Oligocene Unconformity (LOU), and have been deposited through the interaction of downslope and parallel-to-slope depositional processes. The upper to middle continental slope is dominated by mass-transport deposits (debris flows), which progressively diminish downslope, and were largely generated and deposited during glacial cycles when ice sheets supplied large quantities of terrigeneous sediment to the upper slope and icebergs scoured sea-floor sediments on the outer shelf and uppermost slope. Large-scale sediment failures have also occurred on the upper slope and resulted in deposition of thick, regionally extensive mass-transport deposits on portions of the lower slope and channel floor. In contrast, large fields of migrating sediment waves and drift deposits dominate most of the middle to lower slope below 700 m water depth and represent deposition by strong contour currents of the various water masses moving northeastward and southwestward through the channel. These migrating sediment waves indicate strong northeastward current flow at water depths shallower than ∼700 m and strong southwestward current flow at water depths from ∼700 to >1,400 m. These flow directions are consistent with present-day water-mass flow through the Faeroe-Shetland Channel. The Faeroe-Shetland Channel floor is underlain by thin conformable sediments that appear to be predominantly glacial marine and hemipelagic with less common turbidites and debris flows. No evidence is observed in seismic or core data that indicates strong contour-current erosion or redistribution of sediments along the channel floor.