Astrachan, O.L. (2000), *A Computer Science Tapestry: Exploring Programming and Computer Science* with C++, US: McGraw-Hill.

Boolos, G.S. and Jeffrey R.C. (1989), *Computability and Logic*, Cambridge: Cambridge University Press.

Church, A. (1936a), 'An Unsolvable Problem of Elementary Number Theory' *American Journal of Mathernatics* 58, pp. 345–363. Reprinted in Davis (1965), pp. 88–107.

Church, A. (1936b), 'A Note on the Entscheidungsproblem', *Journal of Symbolic Logic* 1, pp. 40–41. Reprinted in Davis (1965), pp. 108–115.

Church, A. (1937a), 'Review of Turing (1936)', *Journal of Symbolic Logic* 2, pp. 42–43.

Church, A. (1937b), 'Review of Post (1936)', *Journal of Symbolic Logic* 2, p. 43.

Cleland, C. (1993), 'Is the Church–Turing Thesis True?', *Minds and Machines* 3, pp. 283–312.

Cleland, C. (forthcoming), 'Effective Procedures and Causal Processes', *Minds and Machines*.

Copeland, B.J. (1996), The Church–Turing Thesis', in J. Perry and E. Zalta, eds., *The Stanford Encyclopedia of Philosophy*. [http://plato.stanford.edu]

Davis, M. (ed.), (1965) *The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions*, NewYork: Raven.

Deutsch, D. (1985), 'Quantum Theory: The Church–Turing Principle and the Universal Quantum Computer',' *Proceedings of the Royal Society of London A* 400, pp. 97–117.

Gandy, R.O. (1980), 'Church's Thesis and Principles of Mechanisms', in J. Barwise, J.J. Keisler and K. Kunen, eds., *The Kleene Symposium*, Amsterdam: North-Holland, pp. 123–145.

Gandy, R.O. (1988), 'The Confluence of Ideas in 1936', in Herken, pp. 55–111.

Gödel, K. (1931), 'On Formally Undecidable Propositions of Principia Mathematica and Related Systems I', *Monatshefte für Mathematik und Physik* 38, pp. 173–198. Translated and Reprinted in Davis (1965) pp. 5–38.

Gödel, K. (1946), 'Remarks Before the Princeton Bicentennial Conference on Problems in Mathematics'. Reprinted in Davis (1965), pp. 84–88.

Harel, D. (1992), *Algorithms: The Spirit of Computing* (second edition), Reading, MA: Addison-Wesley.

Herken, R.(ed.) (1988). *The Universal Turing Machine A Half-Century Survey*, Oxford: Oxford University Press.

Hilbert, D. and Ackermann, W. (1928), *Grundzuge der Theoretischen Logic*, Berlin: Springer-Verlag.

Hilbert, D. and Bernays, P. (1939), *Grundlagen der Mathematik II*, Berlin: Springer-Verlag.

Hogarth, M.L. (1994), 'Non-Turing Computers and Non-Turing Computability', *Proceedings of the Philosophy of Science Association (PSA)* 1, pp. 126–138.

Hopcroft, J.C. and Ullman, J.D. (1979), *Introduction to Automata Theory, Languages and Computation*, Reading, MA: Addison-Wesley.

Kleene, S.C. (1936), 'General Recursive Functions of Natural Numbers', *Mathematische Annalen* 112, pp. 727–742. Reprinted in Davis (1965), pp. 236–253.

Kleene, S.C. (1988), 'Turing's Analysis of Computability, and Major Applications of It',' in Herken, pp. 17–54.

Lewis, H.R. and Papadimitriou, C.H. (1981), *Elements of the Theory of Computation*, Eaglewood Cliffs, NJ: Prentice-Hall.

Mancosu, P. (1999), 'Between Russell and Hilbert: Behmann on the Foundations of Mathematics'.*Bulletin of Symbolic Logic* 5, pp. 303–330.

Nagin, P. and Impagliazzo J. (1995), *Computer Science: A Breadth-First Approach with Pascal*, New York: John Wiley & Sons.

Pitowsky, I. (1990), 'The Physical Church Thesis and Physical Computational Complexity', *Iyyun* 39, pp. 81–99.

Post, E.L. (1936), 'Finitary Combinatory Processes – Formulation I', *Journal of Symbolic Logic* 1, pp. 103–105. Reprinted in Davis, (1965), pp. 288–291.

Shagrir, O. (1992) 'A Neural Net with Self-Inhibiting Units for the N-Queens Problem', *International Journal of Neural Systems* 3, pp. 249–252.

Shagrir, O. (1997), 'Two Dogmas of Computationalism' *Minds and Machines* 7, pp. 321–344.

Shagrir, O. and Pitowsky, I. (forthcoming), 'Physical Hypercomputation and the Church–Turing Thesis', *Minds and Machines*.

Shepherdson, J.C. (1988), 'Mechanisms for Computing Over Arbitratry Structures', in Herken, pp. 537–555.

Sieg, W. (1994), 'Mechanical Procedures and Mathematical Experience', in A. George, ed., *Mathematics and Mind*, Oxford: Oxford University Press, pp. 71–117.

Sieg, W. (1997), 'Step by Recursive Step: Church's Analysis of Effective Calculability', *Bulletin of Symbolic Logic* 2, pp. 154–180.

Sieg, W. (2001), 'Calculation by Man and Machine: Conceptual Analysis', in W. Sieg, R. Sommer and C. Talcott, eds., *Reflections on the Foundations of Mathematics (Essays in Honor of Solomon Feferman)*, Volume 15 of Lectures Notes in Logic, Association of Symbolic Logic, pp. 387–406.

Sieg,W. (forthcoming), 'Calculation byMan andMachine: Mathematical Presentation', *Proceedings of the International Congress of Logic, Methodology and Philosophy of Science* (Cracow, 1999), Kluwer, pp. 246–260.

Sieg,W. and Byrnes, J. (1999), 'An Abstract Model for Parallel Computations: Gandy's Thesis', *The Monist* 82, pp. 150–164.

Siegelmann, H.T. (1995), 'Computation Beyond Turing Limit', *Science* 268, pp. 545–548.

Turing, A.M. (1936), 'On Computable Numbers, with an Application to the Entscheidungsproblem', *Proceedings of the London Mathematical Society* (2) 42, pp. 230-265. A correction in 43 (1937), pp. 544–546. Reprinted in Davis (1965), pp. 115–154.

Wolfarm, S. (1985), 'Undecidability and Intractability in Theoretical Physics', *Physical Review Letters* 54, pp. 735–738.