1.

Bassi, F., and Rebay, S. (1997). A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. *J. Comput. Phys.*
**131**, 267–279.

2.

Biswas, R., Devine, K. D., and Flaherty, J. (1994). Parallel, adaptive finite element methods for conservation laws. *Appl. Numer. Math.*
**14**,255–283.

3.

Cockburn, B. (1999). Discontinuous Galerkin methods for convection-dominated problems. In Barth, T. J., and Deconinck, H. (eds.), *High-Order Methods for Computational Physics*, Lecture Notes in Computational Science and Engineering, Vol. 9, Springer, pp. 69–224.

4.

Cockburn, B., Hou, S., and Shu, C.-W. (1990). TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. *Math. Comp.*
**54**, 545–581.

5.

Cockburn, B., Karniadakis, G., and Shu, C.-W. (2000). The development of discontinuous Galerkin methods. In Cockburn, B., Karniadakis, G., and Shu C.-W. (eds.), *Discontinuous Galerkin Methods: Theory, Computation and Applications*, Lecture Notes in Computational Science and Engineering, Vol. 11, Springer, Part I: Overview, pp. 3–50.

6.

Cockburn, B., Lin, S.-Y., and Shu, C.-W. (1989). TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems. *J. Comput. Phys.*
**84**, 90–113.

7.

Cockburn, B., Luskin, M., Shu, C.-W., and Süli, E. Enhanced accuracy by post-processing for finite element methods for hyperbolic equations. *Math. Comp.* To appear.

8.

Cockburn, B., and Shu, C.-W. (1991). The Runge-Kutta local projection *P1*-discontinuous-Galerkin finite element method for scalar conservation laws. *Math. Model. Numer. Anal. (M2AN)*
**25**, 337–361.

9.

Cockburn, B., and Shu, C.-W. (1989). TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: General framework. *Math. Comp.*
**52**, 411–435.

10.

Cockburn, B., and Shu, C.-W. (1998). TVB Runge-Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws V: Multidimensional systems. *J. Comput. Phys.*
**141**, 199–224.

11.

Cockburn, B., and Shu, C.-W. (1998). The local discontinuous Galerkin method for time-dependent convection diffusion systems. *SIAM J. Numer. Anal.*
**35**, 2440–2463.

12.

Cockburn, B., and Shu, C.-W. (2001). Runge-Kutta Discontinuous Galerkin methods for convection-dominated problems. *J. Sci. Comput.*
**16**, 173–261.

13.

Dekker, K., and Verwer, J. G. (1984). *Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations*, North-Holland.

14.

Jiang, G.-S., and Shu, C.-W. (1994). On cell entropy inequality for discontinuous Galerkin methods. *Math. Comp.*
**62**, 531–538.

15.

Johnson, C., and Pitkäranta, J. (1986). An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, *Math. Comp.*
**46**, 1–26.

16.

LeVeque, R. J. (1990). *Numerical Methods for Conservation Laws*, Birkhauser Verlag, Basel.

17.

Shu, C.-W. (1987). TVB uniformly high-order schemes for conservation laws. *Math. Comp.*
**49**, 105–121.

18.

Shu, C.-W. (2001). Different formulations of the discontinuous Galerkin method for the viscous terms. In Shi, Z.-C., Mu, M., Xue W., and Zou, J. (eds.), *Advances in Scientific Computing*, Science Press, pp. 144–155.

19.

Shu, C.-W., and Osher, S. (1988). Efficient implementation of essentially non-oscillatory shock capturing schemes. *J. Comput. Phys.*
**77**, 439–471.

20.

Yan, J., and Shu, C.-W., A local discontinuous Galerkin method for KdV type equations. *SIAM J. Numer. Anal.* to appear.