M.F. Anjos, “New convex relaxations for the Maximum Cut and VLSI layout problems,” Ph.D. Thesis, University of Waterloo, 2001. Available online at http://etd.uwaterloo.ca/etd/manjos2001.pdf.

M.F. Anjos and H. Wolkowicz, “Strengthened semidefinite relaxations via a second lifting for the Max-Cut problem,” *Discrete Appl. Math.*, vol. 199, no. 1-2, pp. 79–106, 2002.

F. Barahona, “The max-cut problem on graphs not contractible to *K*5,” *Oper. Res. Lett.*, vol. 2, no. 3, pp. 107–111, 1983.

F. Barahona, “On cuts and matchings in planar graphs,” *Math. Programming*, vol. 60, no. 1 (Ser. A), pp. 53–68, 1993.

F. Barahona, M. Grötschel, M. J¨unger, and G. Reinelt, “An application of combinatorial optimization to statistical physics and circuit layout design,” *Oper. Res.*, vol. 36, pp. 493–513, 1988.

F. Barahona and A.R. Mahjoub, “On the cut polytope,” *Math. Programming*, vol. 36, no. 2, pp. 157–173, 1986.

S.J. Benson, Y. Ye, and X. Zhang, “Solving large-scale sparse semidefinite programs for combinatorial optimization,” *SIAM J. Optim.*, vol. 10, no. 2, pp. 443–461 (electronic), 2000.

S. Burer and R.D.C. Monteiro, “A projected gradient algorithm for solving the maxcut SDP relaxation,” *Optim. Meth. Softw.*, vol. 15, pp. 175–200, 2001.

M.M. Deza and M. Laurent, *Geometry of Cuts and Metrics*, Springer-Verlag: Berlin, 1997.

U. Feige and G. Schechtman, “On the optimality of the random hyper plane rounding technique for MAX CUT,” Technical report, Weizmann Institute, Rehovot, Israel, 2000.

M.R. Garey and D.S. Johnson, *Computers and Intractability: A Guide to the Theory of NP-Completeness*, Freeman: San Francisco, 1979.

M.X. Goemans, “Semi definite programming in combinatorial optimization,” *Math. Programming*, vol. 79, pp. 143–162, 1997.

M.X. Goemans, “Semi definite programming and combinatorial optimization,” *Documenta Mathematica*, Extra Volume ICM 1998, pp. 657–666, 1998.

M.X. Goemans and F. Rendl, “Combinatorial optimization,” in *Handbook of Semidefinite Programming: Theory, Algorithms, and Applications*, H. Wolkowicz, R. Saigal, and L. Vandenberghe (Eds.), Kluwer Academic Publishers: Boston, MA, 2000.

M.X. Goemans and D.P. Williamson, “.878-approximation algorithms for MAX CUT and MAX 2SAT,” in *ACM Symposium on Theory of Computing (STOC*), 1994.

M.X. Goemans and D.P. Williamson, “Improved approximation algorithms for maximum cut and satisfiability problems using semi definite programming,” *J. Assoc. Comput. Mach.*, vol. 42, no. 6, pp. 1115–1145, 1995.

J. Hastad, “Some optimal in approximability results,” in *Proc. of the 29th ACM Symp. on Theory Comput.*, 1997.

C. Helmberg, “An interior-point method for semi definite programming and max-cut bounds,” PhD Thesis, Graz University of Technology, Austria, 1994.

C. Helmberg and F. Oustry, “Bundle methods to minimize the maximum eigenvalue function,” in *Handbook of Semidefinite Programming: Theory, Algorithms, and Applications*, H. Wolkowicz, R. Saigal, and L. Vandenberghe (Eds.), Kluwer Academic Publishers: Boston, MA, 2000.

C. Helmberg, S. Poljak, F. Rendl, and H. Wolkowicz, “Combining semidefinite and polyhedral relaxations for integer programs,” in *Integer Programming and Combinatorial Optimization* (Copenhagen, 1995), Springer: Berlin, 1995, pp. 124–134.

C. Helmberg and F. Rendl, “A spectral bundle method for semi definite programming,” *SIAM J. Optim.*, vol. 10, no. 3, pp. 673–696, 2000.

C. Helmberg, F. Rendl, R.J. Vanderbei, and H. Wolkowicz, “An interior-point method for semi definite programming,” *SIAM J. Optim.*, vol. 6, no. 2, pp. 342–361, 1996.

R.A. Horn and C.R. Johnson, *Matrix Analysis*, Cambridge University Press: Cambridge, 1990.

R.M. Karp, “Reducibility among combinatorial problems,” in *Complexity of Computer Computation*, R.E. Miller and J.W. Thatcher (Eds.), Plenum Press: New York, 1972, pp. 85–103.

J.B. Lasserre, “Optimality conditions and LMI relaxations for 0-1 programs,” LAAS research report 00099, LAAS-CNRS, Toulouse, France, 2000.

M. Laurent, “Tighter linear and semi definite relaxations for max-cut based on the Lovász-Schrijver lift-and-project procedure,” *SIAM J. Optim.*, vol. 12, pp. 345–375, 2001 (electronic publication).

M. Laurent and S. Poljak, “On a positive semi definite relaxation of the cut polytope,” *Linear Algebra Appl.*, vol. 223/224, pp. 439–461, 1995.

M. Laurent and S. Poljak, “On the facial structure of the correlation matrices,” *SIAM J. Matrix Anal. Appl.*, vol. 17, no. 3, pp. 530–547, 1996.

T. Lengauer, *Combinatorial Algorithms for Integrated Circuit Layout*, JohnWiley & Sons Ltd.: Chichester, 1990.

B. Mohar and S. Poljak, “Eigenvalues in combinatorial optimization,” in *Combinatorial Graph-Theoretical Problems in Linear Algebra*, IMA, vol. 50, Springer-Verlag: Berlin, 1993.

Y.E. Nesterov, “Quality of semidefinite relaxation for non convex quadratic optimization,” Technical report, CORE, Universite Catholique de Louvain, Belgium, 1997.

Y.E. Nesterov, H. Wolkowicz, and Y. Ye, “Semi definite programming relaxations of nonconvex quadratic optimization,” in *Handbook of Semi definite Programming: Theory, Algorithms, and Applications*, H. Wolkowicz, R. Saigal, and L. Vandenberghe (Eds.), Kluwer Academic Publishers: Boston, MA, 2000, p. 34.

P. Parrilo, “Structured semi definite programs and semi algebraic geometry methods in robustness and optimization,” Ph.D. Thesis, Caltech, Pasadena, California, 2000.

F. Rendl, “Semi definite programming and combinatorial optimization,” *Appl. Numer. Math.*, vol. 29, pp. 255–281, 1999.

H. Wolkowicz, R. Saigal, and L. Vandenberghe (Eds.), *Handbook of Semi definite Programming: Theory, Algorithms, and Applications*, Kluwer Academic Publishers: Boston, MA, 2000, pp. xxvi+654.

Y. Ye, “Approximating quadratic programming with bound and quadratic constraints,” *Math. Programming*, vol. 84, pp. 219–226, 1999.