[1]

C. Brezinski and M Redivo-Zaglia, Breakdowns in the computation of orthogonal polynomials, in: *Nonlinear Numerical Methods and Rational Approximation II*, ed. A. Cuyt (Kluwer, Dordrecht, 1994) pp. 49–59.

[2]

C. Brezinski and M Redivo-Zaglia, Look-ahead in BiCGStab and other product methods for linear systems, BIT 35 (1995) 169–201.

[3]

R. Fletcher, Conjugate gradient methods for indefinite systems, in: *Numer. Analysis*, Dundee, 1975, ed. G.A. Watson, Lecture Notes in Mathematics, Vol. 506 (Springer, Berlin, 1976) pp. 73–89.

[4]

R.W. Freund, M.H. Gutknecht and N. Nachtigal. An implementation of look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comput. 14 (1993) 137–158.

[5]

G.H. Golub and H.A. Van der Vorst, Closer to the solution: Iterative linear solvers, in: *The State of the Art in Numerical Analysis*, eds. I.S. Duff and G.A. Watson (Clarendon Press, Oxford, 1997) pp. 63–92.

[6]

P.R. Graves-Morris, A 'Look-around Lanczos' algorithm for solving a system of linear equations, Numer. Algorithms 15 (1997) 247–274.

[7]

P.R. Graves-Morris, VPAStab and its breakdowns, submitted to Numer. Algorithms (2002).

[8]

P.R. Graves-Morris and A. Salam, Avoiding breakdown in van der Vorst's method, Numer. Algorithms 21 (1999) 205–223.

[9]

A. Greenbaum, Estimating the attainable accuracy of recursively computed residual methods, SIAM J. Matrix Anal. Appl. 18 (1997) 535–551.

[10]

M.H. Gutknecht, Lanczos-type solvers for non-symmetric linear systems of equations, Acta Numerica 6 (1997) 271–397.

[11]

M.H. Gutknecht and K.J. Ressel, Look-ahead procedures for Lanczos-type product methods based on three-term Lanczos recurrences, SIAM J. Matrix Anal. Appl. 21 (2000) 1051–1078.

[12]

M.H. Gutknecht and Z. Strakoš, Accuracy of two three-term and three two-term recurrences for Krylov space solvers, SIAM J. Matrix Anal. Appl. 22 (2000) 213–229.

[13]

MATLAB 6.0, The MathWorks Inc., Natick, MA, USA.

[14]

J.K. Reid, The use of conjugate gradients for systems of equations possessing 'Property A', SIAM J. Numer. Anal. (1972) 325-332.

[15]

G.L.G. Sleijpen and H.A. van der Vorst, Maintaining convergence properties of BiCGStab methods in finite precision arithmetic, Numer. Algorithms 10 (1995) 203–223.

[16]

G.L.G. Sleijpen and H.A. van der Vorst, Reliable updated residuals in hybrid Bi-CG methods, Computing 56 (1996) 141–163.

[17]

H.A. Van der Vorst, Bi-CGStab: A fast and smoothly convergent variant of Bi-CG for the solution of non-symmetric linear systems, SIAM J. Sci. Statist. Comput. 13 (1992) 631–644.