Afifi, A. A., and Clark, V. (1990). *Computer-Aided Multivariate Analysis*, 2nd ed. New York: Van Nostrand Reinhold.

Agresti, A. (1990). *Categorical Data Analysis.* New York: Wiley.

Aldrich, J. H., and Nelson, F. D. (1984). *Linear Probability, Logit, and Probit Models.* Beverly Hills, CA: Sage.

Allison, P. D. (1995). *Survival Analysis Using the SAS*
^{®}
*System: A Practical Guide.* Cary, NC: SAS Institute Inc.

Amemiya, T. (1981). Qualitative response models: A survey. *Journal of Economic Literature* 19(4): 1483-1536.

Amemiya, T. (1984). Tobit models: A survey. *Journal of Econometrics* 24: 3-61.

Anderson, J. A., and Philips, P. R. (1981). Regression, discrimination and measurement: Models for ordered categorical variables. *Applied Statistics* 30: 22-31.

Austin, J. T., Yaffee, R. A., and Hinkle, D. E. (1992). Logistic regression for research in higher education. In J. C. Smart (ed.), *Higher Education: Handbook of Therory and Research, Vol. VIII,* 379-410. New York: Agathon Press.

Backer, R. J., and Nelder, J. A. (1988). *The Generalised Linear Interactive Modeling* (Release 3.77). Oxford: Numerical Algorithms Group.

Becker, W. E., and Kennedy, P. E. (1992). A graphic exposition of the ordered probit. *Econometric Theory* 8: 127-131.

Becker, W. E., and Waldman, D. (1987). The probit model. In W. Becker and W. Walstad (eds.), *Econometric Modeling in Economic Education Research*, pp. 135-140. Boston: Kluwer-Nijhoff Publishing.

Budd, J. M. (1988). A bibliometric analysis of higher education literature. *Research in Higher Education* 28(2): 180-190.

Cabrera, A. F. (1994). Logistic regression analysis in higher education: An applied perspective. In J. C. Smart (ed.), *Higher Education: Handbook of Theory and Research, Vol. X,* 225-256. New York: Agathon Press.

Cleary, P. D., and Angel, R. (1984). The analysis of relationships involving dichotomous dependent variables. *Journal of Health and Social Behavior* 25: 334-348.

Davison, R., and MacKinnon, J. G. (1993). *Estimation and Inference in Econometrics.* New York: Oxford University Press.

DeMaris, A. (1992). *Logit Modeling: Practical Applications* (Sage University Paper series on Quantitative Applications in the Social Sciences, series no. 07-086). Newbury Park, CA: Sage.

Dey, E. L., and Astin, A. W. (1993). Statistical alternatives for studying college student retention: A comparative analysis of logit, probit, and linear regression. *Research in Higher Education* 34: 569-581.

Fan, X., and Wang, L. (1999). Comparing linear discriminant function with logistic regression for the two-group classification problem. *The Journal of Experimental Education* 67(3): 265-286.

Fienberg, S. E. (1983). *The analysis of cross-classified categorical data,* Rev. ed. Cambridge: Massachusetts Institute of Technology.

Flury, B. (1997). *A First Course in Multivariate Statistics*. New York: Springer.

Greene, W. H. (1989). *LIMDEP*, Vol. 5.1. New York: Econometric Software, Inc.

Greene, W. H. (1993). *Econometric Analysis*, 2nd ed. New York: Macmillan.

Hanushek, E. A., and Jackson, J. E. (1977). *Statistical Methods for Social Scientists*. New York: Academic Press.

Harrell, F. E. (1986). The LOGIST procedure. In SAS Institute, Inc., *SUGI: Supplemental library users guide, version 5 edition*, pp. 269-293. Cary, NC: SAS Institute, Inc.

Harrell, F. E., and Lee, K. L. (1985). A comparison of the discrimination of discriminant analysis and logistic regression under conditions of multivariate normality. In P. K. Sen (ed.), *Biostatistics: Statistics in Biomedical, Public Health, and Environmental Science*, pp. 333-343. New York: North Holland for Elsevier Science Publishers.

Heckman, J. J. (1979). Sample selection as a specification error. *Econometrica* 47: 153-161.

Hinkle, D. E., Austin, J. T., and McLaughlin, G. W. (1989). Log-linear models: Applications in Higher Education Research. In J. C. Smart (ed.), *Higher Education: Handbook of Theory and Research*, Vol. V, pp. 323-353. New York: Agathon Press.

Hosmer, D. W., Jr., and Lemeshow, S. (1989). *Applied Logistic Regression.* New York: John Wiley and Sons, Inc.

Hossler, D., and Scalese-Love, P. (1989). Grounded meta-analysis: A guide for research synthesis. *The Review of Higher Education* 13(1): 1-28.

Jackson, G. A. (1981). Linear analysis of logistic choices, and vice versa. Paper presented to the Social Statistics Section of the American Statistical Association, Washington, D. C.

Jennings, D. E. (1986). Judging inference adequacy in logistic regression. *Journal of the American Statistical Association* 81: 471-476.

Judge, G. G., Griffiths, W. E., Hill, R. C., and Lee, T.-C. (1980). *Introduction to the Theory and Practice of Econometrics.* New York: John Wiley and Sons.

Judge, G. G., Hill, R. C., Griffiths, W. E., Lutkepohl, H., and Lee, T.-C. (1982). *Introduction to the Theory and Practice of Econometrics.* New York: John Wiley and Sons.

Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. *Applied Statistics* 29: 119-127.

Kennedy, J. J. (1992). *Analyzing Qualitative Data.* New York: Praeger.

Kennedy, P. E. (1981). Estimation with correctly interpreted dummy variables in semilogarithmic equations. *American Economic Review* 71(4): 801.

Kim, J. O., and Mueller, C. W. (1978). *Factor analysis: Statistical methods and practical issues*. Sage University Paper series on Quantitative Applications in the Social Sciences, series no. 07-014. Beverly Hills and London: Sage Publications.

Kleinbaum, D. G. (1994). *Logistic Regression: A Self-Learning Text.* New York: Springer-Verlag.

Lawley, D. N., and Maxwell, A. E. (1971). *Factor Analysis as a Statistical Method*. London: Butterworth and Co.

Lei, P.-W., and Koehly, L. M. (April, 2000). Linear discriminant analysis versus logistic regression: A comparison of classification errors. Paper presented at the 2000 Annual Meeting of American Educational Research Association, New Orleans, LA.

Long, J. S. (1997). *Regression Models for Categorical and Limited Dependent Variables*. Thousand Oaks, CA: Sage Publications, Inc.

Maddala, G. S. (1987). *Limited Dependent and Qualitative Variables in Econometrics*, Rev. ed. Cambridge: Cambridge University Press.

Maddala, G. S. (1992). *Introduction to Econometrics.* New York: Macmillan.

Marascuilo, L. A., and Levin, J. R. (1983). *Multivariate Statistics in the Social Sciences: A Researcher*'s Guide*.* Monterey, CA: Brooks/Cole Publishing Company.

McCullagh, P. (1980). Regression models for ordinal data. *Journal of the Royal Statistical Society Series B* 42: 109-142.

McCullagh, P., and Nelder, J. A. (1989). *Generalized Linear Models*, 2nd ed. London: Chapman and Hall.

McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (ed.), *Frontiers of Econometrics*, pp. 105-142. New York: Academic Press.

Menard. S. (1995). *Applied Logistic Regression Analysis.* Thousand Oaks, CA: Sage.

Menard, S. (February 2000). Coefficients of determination for multiple logistic regression analysis. *The American Statistician* 54(1): 17-24.

Norušis, M. J. (1990). *SPSS Advanced Statistics.* Chicago, IL: SPSS, Inc.

Pedhazur, E. (1982). *Multiple Regression in Behavioral Research: Explanation and Prediction*, 2nd ed. New York: Holt, Rinehart and Winston.

Peng, C. Y. J., and So, T. S. H. (April 1999). Computing issues and considerations in logistic regression. Paper presented at the 1999 annual meeting of the American Educational Research Association,Montreal, Canada. [URL: http://php.indiana.edu/~tso/articles]

Peng, C. Y. J., and So, T. S. H. (2002). *Logistic Regression Analysis and Reporting: A Primer. Understanding Statistics*, 1(1), 31-70.

Peng, C. Y. J., and So, T. S. H. (in press). Modeling strategies in logistic regression. *Journal of Applied Modern Statistical Methods*.

Peterson, T. (1985). A comment on presenting results from logit and probit models. *American Sociological Review* 50: 130-131.

Pregibon, D. (1981). Logistic regression diagnostics. *Annals of Statistics* 9: 705-724.

Press, S. J. (1972). *Applied Multivariate Analysis.* New York: Holt, Rinehart, and Winston.

Press, S. J., and Wilson, S. (1978). Choosing between logistic regression and discriminant analysis. *Journal of the American Statistical Association* 73: 699-705.

Pugh, R. C., and Hu, Y. L. (1991). Use and interpretation of canonical correlation analyses in *Journal of Educational Research* articles: 1978-1989. *Journal of Educational Research* 84(3): 147-152.

Ryan, T. P. (1997). *Modern Regression Methods.* New York: John Wiley and Son, Inc.

SAS Institute Inc. (1999). *SAS/STAT*
^{®}
*User*'s Guide, Version 8, Volume 2*.* Cary, NC: SAS Institute Inc.

Scott, K. G., Mason, C. A., and Chapman, D. A. (1999). The use of epidemiological methodology as a means of influencing public policy. *Child Development* 70(5): 1263-1272.

Silverman, R. J. (1985). Higher education as a maturing field? Evidence from referencing practices. *Research in Higher Education* 23(2): 150-183.

Soderstrom, I. R., and Leitner, D. W. (October 1997). The effects of base rate, selection ratio, sample size, and reliability of predictors on predictive efficiency indices associated with logistic regression models. Paper presented at the annual meeting of the Mid-Western Educational Research Association, Chicago, Il.

SPSS Inc. (1999). *SYSTAT*
^{®}
*9.0 Statistics I.* Chicago, IL: SPSS Inc.

Stage, F. K. (1990). LISREL: An introduction and applications in higher education. In J. C. Smart (ed.), *Higher Education: Handbook of Theory and Research, Vol. VI*, pp. 427-466. New York: Agathon Press.

St. John, E. P., Kirshstein, R. J., and Noell, J. (1991). The effects of student financial aid on persistence: A sequential analysis. *The Review of Higher Education* 14(3): 383-406.

Tabachnick, B. G., and Fidell, L. S. (1983). *Using Multivariate Statistics.* New York: Harper Collins.

Tabachnick, B. G., and Fidell, L. S. (1996). *Using Multivariate Statistics*, 3rd ed. New York: Harper Collins.

Thorndike, R. M. (1978). *Correlational Procedures for Research*. New York: Gardner Press.

Tobin, J. (1958). Estimation of relationships for limited dependent variables. *Econometrica* 26(1): 64-85.

Weiler, W. C. (1987). An application of nested multinomial logit model to enrollment choice behavior. *Research in Higher Education* 27: 273-282.

Weiler, W. C. (1989). A flexible approach to modeling enrollment choice behavior. *Economics of Education Reviews* 8(3): 277-283.