Reliable Computing

, Volume 8, Issue 2, pp 131–138

Interval Computation of Viswanath's Constant


  • Jaão Batista Oliveira
    • Faculdade de InformáticaPontificia Universidade Católica do Rio Grande do Sul
  • Luiz Henrique De Figueiredo
    • IMPA—Instituto de Matemática Pura e Aplicada

DOI: 10.1023/A:1014702122205

Cite this article as:
Oliveira, J.B. & De Figueiredo, L.H. Reliable Computing (2002) 8: 131. doi:10.1023/A:1014702122205


Viswanath has shown that the terms of the random Fibonacci sequences defined by t1 = t2 = 1, and tn−1 ± tn−2 for n > 2, where each ± sign is chosen randomly, increase exponentially in the sense that \(\sqrt[n]{{\left| {t_n } \right|}}\) → 1.13198824... as n → ∞ with probability 1. Viswanath computed this approximation for this limit with floating-point arithmetic and provided a rounding-error analysis to validate his computer calculation. In this note, we show how to avoid this rounding-error analysis by using interval arithmetic.

Download to read the full article text

Copyright information

© Kluwer Academic Publishers 2002