Find out how to access previewonly content
Hall Subgroups of Odd Order in Finite Groups
 E. P. Vdovin,
 D. O. Revin
 … show all 2 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
We complete the description of Hall subgroups of odd order in finite simple groups initiated by F. Gross, and as a consequence, bring to a close the study of odd order Hall subgroups in all finite groups modulo classification of finite simple groups. In addition, it is proved that for every set π of primes, an extension of an arbitrary D _{π} group by a D _{π}group is again a D _{π} group. This result gives a partial answer to Question 3.62 posed by L. A. Shemetkov in the “Kourovka Notebook.”.
 A. S. Kondratiev, "Subgroups of finite Chevalley groups," tiUsp. Mat. Nauk, 41, No. 1(247), 5796 (1986).
 tiThe Kourovka Notebook, Institute of Mathematics SO RAN, Novosibirsk (1999).
 Ph. Hall, "Theorems like Sylow's," tiProc. London Math. Soc., III. Ser., 6, No. 22, 286304 (1956).
 J. G. Thompson, "Hall subgroups of the symmetric groups," J. Comb. Theory, Ser. A, No. 1, 271279 (1966).
 F. Gross, "On a conjecture of Philip Hall," Proc. London Math. Soc., III. Ser., 52, No. 3, 464494 (1986).
 F. Gross, "Hall subgroups of order not divisible by 3," Rocky Mountain J. Math., 23, No. 2, 569591 (1993).
 D. O. Revin, "Hall πsubgroups of finite Chevalley groups whose characteristic belongs to π," Mat. Trudy, 2, No. 1, 160208 (1999).
 D. O. Revin, "Two D _{π}theorems for a class of finite groups," preprint No. 40, NIIDM, Novosibirsk (1999).
 F. Gross, "Odd order Hall subgroups of the classical linear groups," Math. Z. 220, No. 3, 317336 (1995).
 F. Gross, "Conjugacy of odd order Hall subgroups," Bull. London Math. Soc. 19, No. 4, 311319 (1987).
 M. I. Kargapolov and Yu. I. Merzlyakov, Fundamentals of Group Theory [in Russian], Nauka, Moscow (1996).
 R. W. Carter, Simple Groups of Lie Type, Pure Appl. Math., Vol. 28, Wiley, London (1972).
 J. E. Humphreys, Linear Algebraic Groups, Springer, New York (1975).
 R. W. Carter, "Centralizers of semisimple elements in finite groups of Lie type," Proc. London Math. Soc., III. Ser. 37, No. 3, 491507 (1978).
 R. W. Carter, "Conjugacy classes in the Weyl group," Comp. Math. 25, No. 1, 159 (1972).
 J. E. Humphreys, Conjugacy Classes in Semisimple Algebraic Groups, Math. Surv. Mon., Vol. 43, Am. Math. Soc., Providence, R.I. (1995).
 D. Deriziotis, "Conjugacy classes and centralizers of semisimple elements in finite groups of Lie type," Vorlesungen aus dem Fachbereich Mathetmatic der Universität Essen, Heft 11 (1984).
 R. W. Carter, "Centralizers of semisimple elements in finite classical groups," Proc. London Math. Soc., III. Ser. 42, No. 1, 141 (1981).
 D. Deriziotis, "The centralizers of semisimple elements of the Chevalley groups E _{7} and E _{8}," Tokyo J. Math. 6, No. 1, 191216 (1983).
 M. Suzuki, "On a class of doubly transitive groups," Ann. Math., II. Ser. 75, No. 1, 105145 (1962).
 H. N. Ward, "On Ree's series of simple groups," Trans. Am. Math. Soc. 121, No. 1, 6280 (1966).
 A. V. Borovik, "The structure of finite subgroups of simple algebraic groups," Algebra Logika 28, No. 3, 249279 (1989).
 V. D. Mazurov and D. O. Revin, "The Hall D _{π}property for finite groups," Sib. Mat. Zh. 38, No. 1, 125134 (1997).
 R. Steinberg, Lectures on Chevalley Groups, Yale University (1967).
 A. V. Borovik, "Jordan subgroups of simple algebraic groups," Algebra Logika, 28, No. 2, 144159 (1989).
 D. Gorenstein and R. Lyons, The Local Structure of Finite Groups of Characteristic 2 Type, Mem. Am. Math. Soc. Vol. 42(276), Providence, R.I. (1983).
 Title
 Hall Subgroups of Odd Order in Finite Groups
 Journal

Algebra and Logic
Volume 41, Issue 1 , pp 829
 Cover Date
 20020101
 DOI
 10.1023/A:1014653900781
 Print ISSN
 00025232
 Online ISSN
 15738302
 Publisher
 Kluwer Academic PublishersPlenum Publishers
 Additional Links
 Topics
 Keywords

 finite simple group, Hall subgroup, exceptional groups of Lie type
 Industry Sectors
 Authors

 E. P. Vdovin ^{(1)}
 D. O. Revin ^{(1)}
 Author Affiliations

 1. Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, Russia