1.

Aho, A., Sethi, R., and Ullman, J. *Compilers-Principles, Techniques, and Tools*. Addison-Wesley, Reading, MA, 1985.

2.

Ariola, Z.M. and Felleisen, M. The call-by-need lambda calculus. *J. Functional Programming*, **7**(3) (1997) 265-301.

3.

Barendregt, H.P. *The Lambda Calculus: Its Syntax and Semantics*, Vol. 103 of Studies in Logic and the Foundations of Mathematics. Elsevier Science Publishers B.V., Amsterdam, 1984.

4.

Comon, H., Dauchet, M., Gilleron, R., Jacquemart, F., Lugiez, D., Tison, S., and Tommasi, M. *Tree Automata Techniques and Applications*, 1999. Book draft available at http://www.grappa.univ-lille3.fr/tata.

5.

de Bruijn, N. The mathematical language AUTOMATH, its usage, and some of its extensions. In *Proceedings of the Symposium on Automatic Demonstration*. Versailles, France, M. Laudet (Ed.). LNM, Vol. 125, Springer-Verlag, 1968, pp. 29-61.

6.

Dowek, G., Felty, A., Herbelin, H., Huet, G., Murthy, C., Parent, C., Paulin-Mohring, C., and Werner, B. The Coq proof assistant user's guide. Technical Report Rapport Techniques 154, INRIA, Rocquencourt, France, 1993. Version 5.8.

7.

Fähndrich, M. and Boyland, J. Statically checkable pattern abstractions. In *ACM SIGPLAN International Conference on Functional Programming*. ACM Press, New York, 1997, pp. 75-84.

8.

Felleisen, M. The calculi of lambda-v-CS-conversion: A syntactic theory of control and state in imperative higher-order programming languages. Ph.D. Thesis, Indiana University, 1987.

9.

Fiskio-Lasseter, J. and Sabry, A. Putting operational techniques to the test: A syntactic theory for behavioral Verilog. In *Electronic Notes in Theoretical Computer Science*, Vol. 26, 1999, pp. 32-49. Also in Third International Workshop on Higher Order Operational Techniques in Semantics.

10.

Gécseg, F. and Steinby, M. *Tree Automata*. Budapest, Akadémiai Kiadó , 1984.

11.

Hopcroft, J. and Ullman, J. *Introduction toAutomata Theory, Languages, and Computation, Computer Science*. Addison-Wesley, Reading, MA, 1979.

12.

Launchbury, J. and Sabry, A. Monadic state: Axiomatization and type safety. In *ACM SIGPLAN International Conference on Functional Programming*. ACM Press, New York, 1997, pp. 227-238.

13.

Mason, I.A. Computing with contexts. *Higher-Order and Symbolic Computation*, **12**(2) (1999) 171-201.

14.

Pfenning, F. and Schürmann, C. System description: Twelf-a meta-logical framework for deductive systems. In *Proceedings of the 16th International Conference on Automated Deduction*. Trento, Italy, H. Ganzinger (Ed.). Springer-Verlag, Berlin, 1999, pp. 202-206.

15.

Semmelroth, M. and Sabry, A. Monadic encapsulation in ML. In *ACM SIGPLAN International Conference on Functional Programming*. ACM Press, New York, 1999, pp. 8-17.

16.

Xiao, Y., Ariola, Z.M., and Mauny, M. From syntactic theories to interpreters: A specification language and its compiler. In *Proceedings of the First International Workshop on Rule-based Programming*. Montréal, Canada, N. Derschowitz and C. Kirchner (Eds.). 2000, pp. 1-16. The proceedings are also available at http://www.loria.fr/~ckirchne/=rule2000/proceedings/.