, Volume 69, Issue 3, pp 381-409

A Necessary Relation Algebra for Mereotopology

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The standard model for mereotopological structures are Boolean subalgebras of the complete Boolean algebra of regular closed subsets of a nonempty connected regular T 0 topological space with an additional "contact relation" C defined by xCy ⇔ x ∩ ≠ Ø

A (possibly) more general class of models is provided by the Region Connection Calculus (RCC) of Randell et al. We show that the basic operations of the relational calculus on a "contact relation" generate at least 25 relations in any model of the RCC, and hence, in any standard model of mereotopology. It follows that the expressiveness of the RCC in relational logic is much greater than the original 8 RCC base relations might suggest. We also interpret these 25 relations in the the standard model of the collection of regular open sets in the two-dimensional Euclidean plane.