An, L. T. H. and Tao, P. D. Solving a class of linearly constrained indefinite quadratic problems by DC algorithms. *J. Global Optimiz.* 11: 253–285, 1997.

An, L. T. H. and Tao, P. D. A branch and bound method via d. c. optimization algorithms and ellipsoidal technique for box constrained nonconvex quadratic problems. *J. Global Optimiz.* 13: 171–206, 1998.

Bazaraa, M. S. and Shetty, C. M. *Nonlinear programming - theory and algorithms*. Wiley, New York, 1979.

Bomze, I. M. On standard quadratic optimization problems. *J. Global Optimiz.* 13: 369–387, 1998.

Bomze, I. M., Budinich, M., Pardalos, P. M. and Pelillo, M. The maximum clique problem. In D.-Z. Du and P. M. Pardalos, editors, *Handbook of Combinatorial Optimization* suppl. Vol. A:1–74. Kluwer, Dordrecht, 1999.

Bomze, I. M., Budinich, M., Pelillo, M. and Rossi, C. Annealed replication: a new heuristic for the maximum clique problem. To appear in: Discrete Applied Math., 2001.

Bomze, I. M., Dür, M., de Klerk, E., Quist, A. J., Roos, C. and Terlaky, T. On copositive programming and standard quadratic optimization problems. *J. Global Optimiz.* 18: 301–320, 2000.

Bomze, I. M. and Stix, V. Genetical engineering via negative fitness: evolutionary dynamics for global optimization. *Annals of O.R.* 89: 279–318, 1999.

Cegielski, A. The Polyak subgradient projection method in matrix games. *Discuss. Math.* 13: 155–166, 1993.

Dür, M. A Note on Local and Global Optimality Conditions in D.C.-Programming. Research Report No. 56, Dept. of Statistics, Vienna Univ. Econ., 1999.

Hansen, P., Jaumard, B., Ruiz, M. and Xiong, J. Global minimization of indefinite quadratic functions subject to box constraints. *Nav. Res. Logist.* 40: 373–392, 1993.

Horst, R. On generalized bisection of *n*-simplices. *Math. of Comput.* 66: 691–698, 1997.

Horst, R., Pardalos, P. M. and Thoai, V. N. *Introduction to Global Optimization*. Kluwer, Dordrecht, 1995. BRANCH-AND-BOUND FOR STANDARD QUADRATIC OPTIMIZATION 37

Horst, R. and Thoai, V. N. Modification, implementation and comparison of three algorithms for globally solving linearly constrained concave minimization problems. *Computing* 42: 271–289, 1989.

Horst, R. and Thoai, V. N. A new algorithm for solving the general quadratic programming problem. *Comput. Optim. Appl.* 5: 39–48, 1996.

Horst, R., Thoai, V. N. and de Vries, J. On geometry and convergence of a class of simplicial covers. *Optimization* 25: 53–64, 1992.

Horst, R. and Tuy, H. *Global Optimization*. Springer, Heidelberg, 1993.

Johnson, D. S. and Trick, M. A. (editors). *Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge*, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 26. American Mathematical Society, Providence, RI, 1996.

Kuznetsova, A. and Strekalovsky, A. On solving the maximum clique problem. *J. Global Optimiz.* 21: 265–288, 2001.

Massaro, A., Pelillo, M. and Bomze, I. M. A complementary pivoting approach to the maximum weight clique problem. To appear in: *SIAM J. Optimiz.*, 2001.

Murty, K. G. and Kabadi, S. N. Some NP-complete problems in quadratic and linear programming. *Math. Programming* 39: 117–129, 1987.

Nowak, I. A new semidefinite programming bound for indefinite quadratic forms over a simplex. *J. Global Optimiz.* 14: 357–364, 1999.

Phong, T. Q., An, L. T. H. and Tao, P. D. On globally solving linearly constrained indefinite quadratic minimization problems by decomposition branch and bound method. *RAIRO, Rech. Oper.* 30: 31–49, 1996.

Quist, A. J., de Klerk, E., Roos, C. and Terlaky, T. Copositive relaxation for general quadratic programming. *Optimization Methods and Software* 9: 185–209, 1998.

Raber, U. A simplicial branch-and-bound method for solving nonconvex all-quadratic programs. *J. Global Optimiz.* 13: 417–432, 1998.

Renegar, J. *A mathematical view of interior-point methods in convex optimization*. Forthcoming, SIAM, Philadelphia, PA, 2001.

Stix, V. Global optimization of standard quadratic problems including parallel approaches. Ph.D. thesis, Univ. Vienna, 2000.

Stix, V. Target-oriented branch-and-bound method for global optimization. Preprint, Univ. Vienna, 2001.

Weibull, J. W. *Evolutionary Game Theory*. MIT Press, Cambridge, MA, 1995.