, Volume 69, Issue 1, pp 5-40

An Overview of Tableau Algorithms for Description Logics

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Description logics are a family of knowledge representation formalisms that are descended from semantic networks and frames via the system Kl-one. During the last decade, it has been shown that the important reasoning problems (like subsumption and satisfiability) in a great variety of description logics can be decided using tableau-like algorithms. This is not very surprising since description logics have turned out to be closely related to propositional modal logics and logics of programs (such as propositional dynamic logic), for which tableau procedures have been quite successful.

Nevertheless, due to different underlying institutions and applications, most description logics differ significantly from run-of-the-mill modal and program logics. Consequently, the research on tableau algorithms in description logics led to new techniques and results, which are, however, also of interest for modal logicians. In this article, we will focus on three features that play an important rôle in description logics (number restrictions, terminological axioms, and role constructors), and show how they can be taken into account by tableau algorithms.