Skip to main content
Log in

In situ XAFS Characterization of Supported Homogeneous Catalysts

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Heterogenization of homogeneous catalysts explores the cross-fertilization of homogeneous and heterogeneous catalysts to combine most of their advantages. The molecular dispersion of active sites in these materials limits the application of conventional spectroscopic techniques utilized for the characterization of heterogeneous catalysts. The X-ray absorption spectroscopy is the most suitable tool to characterize the molecular species present in these catalysts because this technique is sensitive to short-range structural orders, element-specific and amenable to in situ studies. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) studies for selective examples of supported homogeneous catalysts are reviewed. Supported liquid phase catalysts (supported Wacker-type catalysts for CO oxidation), intercalated homogeneous catalysts, supported metal complexes for the olefin polymerization and tethered homogeneous catalysts are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Choplin and F. Quignard, Coord. Chem. Rev. 178–180 (1998) 1679.

    Google Scholar 

  2. E.D. Park, J.S. Lee and K.H. Lee, Catal. Today 63 (2000) 147.

    Google Scholar 

  3. D.C. Koningsberger, B.L. Mojet, G.E. van Dorssen and D.E. Ramaker, Topics Catal. 10 (2000) 143.

    Google Scholar 

  4. O. Alexeev and B.C. Gates, Topics Catal. 10 (2000) 273.

    Google Scholar 

  5. J.S. Lee, S.H. Choi, K.D. Kim and M. Nomura, Appl. Catal. B 7 (1996) 199.

    Google Scholar 

  6. S.H. Choi and J.S. Lee, React. Kinet. Catal. Lett. 57 (1996) 227.

    Google Scholar 

  7. Y. Yamamoto, T. Matsuzaki, K. Ohdan and Y. Okamoto, J. Catal. 161 (1996) 577.

    Google Scholar 

  8. E.D. Park, S.H. Choi and J.S. Lee, J. Phys. Chem. B 104 (2000) 5586.

    Google Scholar 

  9. K.D. Kim, I.-S. Nam, J.S. Chung, J.S. Lee, S.G. Ryu and Y.S. Yang, Appl. Catal. B 5 (1994) 103.

    Google Scholar 

  10. D.J. Koh, J.H. Song, S.-W. Ham, I.-S. Nam, R.-W. Chang, E.D. Park, J.S. Lee and Y.G. Kim, Korean J. Chem. Eng. 14 (1997) 486.

    Google Scholar 

  11. E.D. Park and J.S. Lee, J. Catal. 180 (1998) 123.

    Google Scholar 

  12. E.D. Park and J.S. Lee, J. Catal. 193 (2000) 5.

    Google Scholar 

  13. K.A. Carrado and S.R. Wasserman, Chem. Mater. 8 (1996) 219.

    Google Scholar 

  14. J.H. Choy, D.K. Kim, J.C. Park, S.N. Choi and Y.J. Kim, Inorg. Chem. 36 (1997) 189.

    Google Scholar 

  15. P.J. Alonso, J.M. Fraile, J. Garcia, J.I. Garcia, J.I. Martinez, J.A. Mayoral and M.C. Sanchez, Langmuir 16 (2000) 5607.

    Google Scholar 

  16. P.J.V. Jones and R.J. Oldman, in: Transition Metals and Organometallics as Catalysts for Olefin Polymerization,eds.W. Kaminsky and H. Sinn (Springer, Berlin, 1988) p. 223.

    Google Scholar 

  17. L. Aleandri, V. Fraaije, G. Fink, D. Jones and J. Roziere, Macromol. Rapid Commun. 15 (1994) 453.

    Google Scholar 

  18. A.G. Potapov, V.V. Kriventsov, D.I. Kochubey, G.D. Bukatov and V.A. Zakharov, Macromol. Chem. Phys. 198 (1997) 3477.

    Google Scholar 

  19. P.J. Ellis, R.W. Joyner, T. Maschmeyer, A.F. Masters, D.A. Niles and A.K. Smith, J. Mol. Catal. A 111 (1996) 297.

    Google Scholar 

  20. S. O'Brien, J. Tudor, T. Maschmeyer and D. Ohare, J. Chem. Soc. Chem. Commun. 19 (1997) 1905.

    Google Scholar 

  21. J.H. Lunsford and S. Fu, Langmuir 6 (1990) 1784.

    Google Scholar 

  22. S.H. Lau, V. Caps, K.W. Yeung, K.Y. Wong and S.C. Tsang, Micropor. Mesopor. Mater. 32 (1999) 279.

    Google Scholar 

  23. C. Bianchini, D.G. Burnaby, J. Evans, P. Frediani, A. Meli, W. Oberhauser, R. Psaro, L. Sordelli and F. Vizza, J. Am. Chem. Soc. 121 (1999) 5961.

    Google Scholar 

  24. S. O'Brien, J. Tudor, S. Barlow, M.J. Drewitt, S.J. Heyes and D. Ohare, J. Chem. Soc. Chem. Commun. 6 (1997) 641.

    Google Scholar 

  25. E. Lindner, T. Schneller, F. Auer and H.A. Mayer, Angew. Chem. Int. Ed. 38 (1999) 2154.

    Google Scholar 

  26. E. Lindner, T. Schneller, H.A. Mayer, H. Bertagnolli, T.S. Ertel and W. Horner, Chem. Mater. 9 (1997) 1524.

    Google Scholar 

  27. O. Krocher, R.A. Koppel, M. Froba and A. Baiker, J. Catal. 178 (1998) 284.

    Google Scholar 

  28. E. Lindner, W. Wielandt, A. Baumann, H.A. Mayer, U. Reinohl, A. Weber, T.S. Ertel and H. Bertagnolli, Chem. Mater. 11 (1999) 1833.

    Google Scholar 

  29. E. Lindner, F. Auer, A. Baumann, P. Wegner, H.A. Mayer, H. Bertagnolli, U. Reinohl, T.S. Ertel and A. Weber, J. Mol. Catal. A 157 (2000) 97.

    Google Scholar 

  30. E. Lindner, A. Baumann, P. Wegner, H.A. Mayer, U. Reinohl, A. Weber, T.S. Ertel and H. Bertagnolli, J. Mater. Chem. 10 (2000) 1655.

    Google Scholar 

  31. A.P. Markusse, B.F.M. Kuster, D.C. Koningsberger and G.B. Marin, Catal. Lett. 55 (1998) 141.

    Google Scholar 

  32. H.H.C.M. Pinxt, B.F.M. Kuster, D.C. Koningsberger and G.B. Marin, Catal. Today 39 (1998) 351.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.S., Park, E.D. In situ XAFS Characterization of Supported Homogeneous Catalysts. Topics in Catalysis 18, 67–72 (2002). https://doi.org/10.1023/A:1013834317787

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013834317787

Navigation