Skip to main content
Log in

Soil organic carbon sequestration in tropical areas. General considerations and analysis of some edaphic determinants for Lesser Antilles soils

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Some general notions on soil organic carbon (SOC) sequestration and the difficulties to evaluate this process globally are presented. Problems of time- and space- scales are emphasized. SOC erosion, which is generally difficult to evaluate in relation to land use changes, is discussed in detail. Different aspects of SOC sequestration on the Lesser Antilles are presented for a wide range of soil types. Comparisons between soils revealed that the SOC stocks in the Lesser Antilles are highly dependent upon the mineralogy: higher stocks for allophanic (ALL) soils than for low activity clay (LAC) and high activity clay (HAC) soils. But in terms of potential of SOC sequestration (pSeq-SOC, differences between permanent vegetation and continuous cultivation situations), there are no differences between ALL and LAC soils (22.9 and 23.3 tC. ha−1, respectively). On the other hand, the potentials of SOC sequestration were higher for HAC soils (30.8 – 59.4 tC. ha−1, with the higher levels in the less Mg- and Na-affected Vertisol). Sheet erosion is a serious problem for Vertisol with high Mg and Na on exchange complex, causing high dispersability of fine elements. Thus, the lower SOC levels in these soils may be partly due to erosion losses. Laboratory incubations have shown that 37 – 53% of the protected SOC in these soils was located in aggregates larger than 0.2 mm. The effect of agricultural practices on SOC sequestration was studied for the Vertisols. Intensification of pastures led to higher plant productivity and higher organic matter restitutions and SOC sequestration. The gain was 53.5 and 25.4 tC. ha−1 for the low and high-Mg Vertisol, respectively (0–20 cm layer). SOC sequestration with pastures also depends upon the plot history with lower mean annual increase in SOC for the initially eroded (1.0 gC . kg−1 soil . yr−1) than for the non-degraded (1.5 gC . kg−1 soil . yr−1) Vertisol. Loss of SOC in a pasture-market gardening rotation was 22.2 tC . ha−1 with deep (30–40 cm) and 10.7 tC . ha−1 with surface (10–15 cm) tillage. It was unclear whether the differences in SOC losses were due to mineralization and/or to erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht A, Brossard M, Chotte JL & Feller C (1992) Les stocks organiques des principaux sols cultivés de la Martinique (Petites Antilles). Cah ORSTOM sér Pédol 27: 23–36

    CAS  Google Scholar 

  • Blanchart E, Achouak W, Albrecht A, Barakat M, Bellier G, Cabidoche Y M, Hartmann C, Heulin T, Larré-Larrouy M C, Laurent J Y, Mahieu M, Thomas F, Villemin G & Watteau F (2000) Déterminants biologiques de l'agrégation dans les Vertisols des Petites Antilles. Conséquences sur l'érodibilité. Etude et Gestion des Sols J: 309–328.

  • Boudot JP, Hadj BAB & Chone T (1986) Carbon mineralization in andosols and aluminium-rich highlands soils. Soil Biol Biochem 18: 457–461

    Article  CAS  Google Scholar 

  • Bruce JP, Frome M, Haites E, Janzen H, Lal R & Paustian K (1999) Carbon sequestration in soils. J. Soil Wat Cons 54: 382–389

    Google Scholar 

  • Buenos-Aires Decisions (1998) Report of the Conference of the Parties on fourth session, held at Buenos-Aires from 2 to 14 november 1998. FCCC/CP/1998/16/Add1 http://wwwunfcccorg/

  • Chevallier T (1999) Dynamique et déterminants du stockage du carbone dans un Vertisol sous prairie (Martinique). Doct Thesis, Univ. Montpellier, France

    Google Scholar 

  • Cole V, Cerri C, Minami K, Mosier A, Rosenberg N & Sauerbeck (1996) Agricultural Options for Mitigation of Greenhouse Gas Emissions. In: Watson RT et al (eds). Climate Change 1995 Impacts, Adaptations and Mitigation of Climate Change Scientific-Technical Analyses Contribution ofWorking Group II, Chap 23, pp 747–771. Cambridge University Press, USA

    Google Scholar 

  • Coulombe CE, Wilding LP & Dixon JB (1996) Overview of Vertisols: characteristics and impacts on society. In: Advances in Agronomy, vol. 57: 289–37

    Article  CAS  Google Scholar 

  • Crasswell ET & Lefroy RDB (2001) The role and function of organic matter in tropical soils. Nutr Cycl Agroecosyst 61: 7–18.

    Article  Google Scholar 

  • Dalal RC, Strong WM, Weston EJ, Cooper JE, Lehane KJ, King AJ & Chicken CJ (1995) Sustaining productivity of a Vertisol at Warra, Queensland, with fertilisers, no-tillage, or legumes. 1–Organic matter status. Aust J Exp Agric 35: 903–913

    Article  CAS  Google Scholar 

  • Feller C (1995) La matière organique dans les sols tropicaux à argile 1:1 Recherche de compartiments organiques fonctionnels. Une approche granulométrique. ORSTOM, Coll TDM N° 144, Paris, 393 p + Annex

  • Feller C, Albrecht A & Tessier D (1996) Aggregation and organic carbon storage in kaolinitic and smectitic soils. In: Structure and OrganicMatter Storage in Agricultural Soils, Carter MR & Stewart BA (ed) Advances in Soil Science, pp 309–359, CRC Press, Boca Raton, USA

    Google Scholar 

  • Feller C & Beare MH (1997) Physical control of soil organic matter dynamics in tropical land-use systems. Geoderma 79: 49–67

    Article  Google Scholar 

  • Feller C, Balesdent J, Nicolardot B & Cerri C (2001) Approaching functional soil organic matter pools through particle-size fractionation Examples for tropical soils. In Lal R, Kimble KM & Follet RF (eds) Assesment Methods for Soil Carbon. Advances in Soil Science, pp. 53–67 CRC Press. Boca Raton, USA

    Google Scholar 

  • Golchin A, Oades J M, Skjemstad J O & Clarke P (1994) Soil structure and carbon cycling. Aust J Soil Res 32: 1043–1068

    Article  Google Scholar 

  • Hartmann C, Blanchart E, Albrecht A, Bonneton A, Parfait F, Mahieu M, Gaullier C & Ndandou JF (1998) Nouvelles techniques de préparation des Vertisols en culture maraîchère à la Martinique. Incidences pédologiques et agro-économiques. Agriculture et Développement 18: 81–89

    Google Scholar 

  • Jenny H, Bingham F & Padillia-Saravia (1948) Nitrogen and organic matter contents of equatorial soils of Columbia, South America. Soil Sci 66: 173–186

    CAS  Google Scholar 

  • Jones MJ (1973) The organic matter content of the savanna soils of West Africa. J Soil Sci 24: 42–53

    Article  Google Scholar 

  • Kyoto Protocol (1997) Kyoto Protocol to the United Nations Framework, Convention on Climate Change Kyoto, 11/12/1997. http://wwwunfcccorg/

  • Ladd JN, Foster RC & Skjemstad JO (1993) Soil structure: carbon and nitrogen metabolism. Geoderma 56: 401–434

    Article  CAS  Google Scholar 

  • Ndandou J F (1998) Variations du stock organique et des propriétés physiques d'un Vertisol sous prairie après mise en culture maraîchère. Effet du mode de travail du sol. Thesis Doct, Univ. Montpellier, France

    Google Scholar 

  • Neill C & Davidson EA (2000) Soil carbon accumulation or loss following deforestation for pasture in the Brazilian Amazon. Chap. 10, In: Lal R, Kimble JM & Stewart B (eds) Global Climate Change and Tropical Ecosystems, pp 197–211. Advances in Soil Science, CRC Press

  • Oades JM, Gillman GP & Uehara G (1989) Interactions of soil organic matter and variable-charge clays. In: Oades JM & Uehara G (eds) Dynamics of Soil Organic Matter in Tropical Ecosystems, pp 69–95. NifTAL Project, Hawaï Univ

  • Post WM, Emmanuel WR, Zinke PJ & Stangenberger A G (1982) Soil carbon pools and world life zones. Nature 298: 156–159

    Article  CAS  Google Scholar 

  • Puget P, Chenu C & Balesdent J (1995) Total and young organic matter distributions in aggregates of silty cultivated soils. Eur J Soil Sci 46: 449–459

    Article  Google Scholar 

  • Roose E & Barthes B (2001) Organic matter management for soil conservation and productivity restoration in Africa: A contribution for francophone research. Nutr Cycl Agroecosyst 61: 159–170

    Article  Google Scholar 

  • Roy C (1999) Options techniques et socio-économiques des émissions de CO2 et d'augmentation des stocks de carbone. CR Acad Agr Fr 85: 311–320

    CAS  Google Scholar 

  • Sanchez PA (1976) Properties and management of soils in the tropics. Wiley, New York. 618 p.

    Google Scholar 

  • Starr GC, Lal R, Malone R, Hothem D, Owens L & Kimble J (2000) Modeling soil carbon transported by water erosion processes. Land Degrad Develop 11: 83–91

    Article  Google Scholar 

  • Wada KJ (1985) The distinctive properties of Andosols. Springer Verlag, NY. 233 p

    Google Scholar 

  • Watson RT, Noble R, Bolin B, Ravindranath NH, Verado DJ & Dokken DJ (2000) Land Use, Lan-Use Change, and Forestry. A special report of the IPCC. IPCC Publ., Cambridge Univ. Press, UK

    Google Scholar 

  • Yerima BPK, Wilding LP, Hallmark CT & Calhow FG (1989) Statistical relationships among selected properties of Northern Cameroon Vertisols and associated Alfisols. Soil Sci Soc Am J 53: 1758–1763

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Feller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feller, C., Albrecht, A., Blanchart, E. et al. Soil organic carbon sequestration in tropical areas. General considerations and analysis of some edaphic determinants for Lesser Antilles soils. Nutrient Cycling in Agroecosystems 61, 19–31 (2001). https://doi.org/10.1023/A:1013359319380

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013359319380

Navigation