Skip to main content
Log in

Genetic diversity and conservation and utilization of plant genetic resources

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Biodiversity refers to variation within the living world, while genetic diversity represents the heritable variation within and between populations of organisms, and in the context of this paper, among plant species. This pool of genetic variation within an inter-mating population is the basis for selection as well as for plant improvement. Thus, conservation of this plant genetic diversity is essential for present and future human well-being. During recent years, there has been increasing awareness of the importance of adopting a holistic view of biodiversity, including agricultural biodiversity, conservation for sustainable utilization and development. These principles have been enshrined in the Convention on Biological Diversity and the Global Plan of Action of the Food and Agriculture Organization of the United Nations. The emphasis is now to understand the distribution and extent of genetic diversity available to humans in plant species, so that the genetic diversity can be safely conserved and efficiently used. It is generally recognized that plant genetic diversity changes in time and space. The extent and distribution of genetic diversity in a plant species depends on its evolution and breeding system, ecological and geographical factors, past bottlenecks, and often by many human factors. Much of the large amount of diversity of a species may be found within individual populations, or partitioned among a number of different populations.

A better understanding of genetic diversity and its distribution is essential for its conservation and use. It will help us in determining what to conserve as well as where to conserve, and will improve our understanding of the taxonomy and origin and evolution of plant species of interest. Knowledge of both these topics is essential for collecting and use of any plant species and its wild relatives. In order to mange conserved germplasm better, there is also a need to understand the genetic diversity that is present in collections. This will help us to rationalize collections and develop and adopt better protocols for regeneration of germplasm seed. Through improved characterization and development of core collections based on genetic diversity information, it will be possible to exploit the available resources in more valuable ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams RP, Do N & Ge-lin C (1992) Preservation of DNA in plant specimens from tropical species by desiccation. In: Adams RP & Adams JE (eds) Conservation of Plant Genes. DNA Banking and In Vitro Biotechnology (pp 153–181). Academic Press Inc, San Diego, USA

    Google Scholar 

  • Adams RP, Zhong M & Fei Y (1999) Preservation of DNA in plant specimens: inactivation and re-activation of Dnases in field specimens. Molecular Ecol. 8: 681–683

    Google Scholar 

  • Al-Hiyaly SEK, McNeilly T & Bradshaw AD (1993) The effect of zinc contamination from electricity pylons. Genetic constraints on selection for zinc tolerance. Heredity 70: 22–32

    Google Scholar 

  • Allard RW (1988) Genetic changes associated with the evolution of adaptedness in cultivated plants and their wild progenitors. J. Heredity 79: 225–238

    Google Scholar 

  • Allard RW, Babbel GR, Clegg MT & Kahler AL (1972) Evidence of coadaptation in Avena barbata. Proc. Natl. Acad. Sci., USA 69: 3043–3048

    Google Scholar 

  • Anon (1973) Genetic vulnerability of Crops. A worldwide problem of raising concern. Agrl. Sci. Rev. 11: 49–55

    Google Scholar 

  • Arora RK (1997) Biodiversity Convention, Global Plan of Action and the National Programmes. In: Hossain MG, Arora RK & Mathur PN (eds) Plant Genetic Resources – Bangladesh Perspective, Proceedings of a National Workshop on Plant Genetic Resources, 26–29 August 1997, Bangladesh Agricultural Research Council, (pp 28–35). BARC-IPGRI, Dhaka, Bangladesh

    Google Scholar 

  • Ashburner GR, Thompson WK & Halloran GM (1997) RAPD analysis of South Pacific coconut palm populations. Crop Sci. 37: 992–997

    Google Scholar 

  • Aston DL & Bradshaw AD (1966) Evolution in closely adjacent populations. II Agrostis stolonifera in maritime habitats. Heredity 37: 9–25

    Google Scholar 

  • Baatout H, Marrakchi M & Pernes J (1990) Electrophoretic studies of genetic variation in natural populations of allogamous Hedysarum capitatum and autogamous H. euspinosissimum. Plant Sci. 69: 49–64

    Google Scholar 

  • Bajracharya J, Rijal DK, Khatiwada SP, Paudel CL, Upadhyay MP, Pandey YR, Tiwari PR & Chaudhary P (1999) Agromorphological characters and farmer perceptions: data collection and analysis. Nepal. In: Jarvis D, Sthapit B & Sears L (eds) Conserving Agricultural Biodiversity In Situ: A Scientific Basis for Sustainable Agriculture (pp 108–118). IPGRI, Rome, Italy

    Google Scholar 

  • Bartsch D, Lehnen M, Clegg J, Pohl-Orf M, Schuphan I & Ellstrand NC (1999) Impact of gene flow from cultivated beet on genetic diversity of wild sea beet populations. Mol. Ecol. 8(10): 1733–1741

    Google Scholar 

  • Beckmann JS & Soller M (1986) Restriction fragment length polymorphisms and genetic improvement of agricultural species. Euphytica 35: 111–124

    Google Scholar 

  • Bennett E (1970) Genecology, genetic resources and plant breeding. Genetica Agraria 24: 210–220

    Google Scholar 

  • Bohs L (1990) The systematics of Solanum section Allophyllum (Solanaceae) Ann. Missouri Bot. Gard. 77: 398–409

    Google Scholar 

  • Bompard JM (1995) Surveying Mangifera in the tropical rain forests of Southeast Asia. In: Guarino L, Ramanatha Rao V & Reid R (eds) Collecting Plant Genetic Diversity (pp 627–637). Wallingford, UK, CAB International in collaboration with IPGRI, and in association with FAO, IUCN and UNEP

    Google Scholar 

  • Bonnell ML & Selander RK (1974) Elephant seals: genetic variation and near extinction. Science 184: 908–909

    Google Scholar 

  • Bradshaw AD (1984) The importance of evolutionary ideas in ecology. In: Sharrocks B (ed) Evolutionary Ecology, (pp 25–47). Blackwell, Oxford

    Google Scholar 

  • Breese EL (1989) Regeneration and Multiplication of Germplasm Resources in Seed Genebanks: The Scientific Background. IBPGR, Rome

    Google Scholar 

  • Bretting PK & MP Widrlechner (1995). Genetic markers and plant genetic resource management. In: Janick J (ed) Plant Breeding Reviews, Vol. 13 (11–86). John Wiley & Sons, New York.

    Google Scholar 

  • Brown AHD (1988) The genetic diversity of germplasm collections. In: Fraleigh B (ed) Proceedings of a Workshop on the Genetic Evaluation of Plant Genetic Resources, Toronto, Canada (pp 9–11). Research Branch, Agriculture Canada, Toronto

    Google Scholar 

  • Brown AHD (1989a) The case for core collections. In: Brown AHD, Marshall DR, Frankel OH & Williams JT (eds) The Use of Plant Genetic Resources, (pp 136–156). Cambridge University Press, Cambridge

    Google Scholar 

  • Brown AHD (1989b) Core collections: A practical approach to genetic resources management. Genome 31: 818–824

    Google Scholar 

  • Brown AHD (1990) Genetic characterization of plant mating systems. In: Brown AHD, Clegg MT, Kahler AL & Weir BS (eds) Plant Population Genetics, Breeding and Genetic Resources (pp 98–115). Sineaur, Sunderland

    Google Scholar 

  • Brown WL (1983) Genetic diversity and genetic vulnerability – an appraisal. Econ. Bot. 37(1): 4–12

    Google Scholar 

  • Brush SB (1991) Farmer conservation of New World crops: The case of Andean potatoes. Diversity 7(1–2): 75–79

    Google Scholar 

  • Brush SB (1995) In situ conservation of landraces in centres of crop diversity. Crop Sci. 35: 346–354

    Google Scholar 

  • Bryant EH & Meffert LM (1996) Nonadditive gene structuring of morphometric variation in relation to a population bottleneck. Heredity 77(2): 168–176

    Google Scholar 

  • Buth DG (1984) The application of electrophoretic data in systematic studies. An. Rev. Ecol. Syst. 15: 501–522

    Google Scholar 

  • Cavalli-Sforza LL & Feldman MW (1990) Spatial subdivision of populations and estimates of genetic variation. Theor. Pop. Biol. 37: 3–25

    Google Scholar 

  • Chakraborty R & Nei M (1977) Bottleneck effects on average heterozygosity and genetic distance with stepwise mutation models. Evolution 31: 347–356

    Google Scholar 

  • Chang TT (1994) The biodiversity crisis in Asian crop production and remedial measures. In: Peng CI & Chou CH (eds) Biodiversity and Terrestrial Ecosystems. Taipei, Institute of Botany, Academia Sinica, Monograph Series No. 14: 25–41

    Google Scholar 

  • Chung MG, Hamrick JL, Jones SB & Derda SG (1991) Isozyme variation within and among populations of Hosta (Liliaceae) in Korea. Systematic Bot. 16(4): 667–684

    Google Scholar 

  • Clegg MT, Epperson BK & Brown AHD (1992) Genetic diversity and reproductive system. In: Dattée Y, Dumas C & Gallais A (ed) Proceedings of the XIIth EUCARPIA Congress on Reproductive Biology and Plant Breeding, Angers, France (pp 311–324). Springer-Verlag, Berlin

    Google Scholar 

  • Colombo C (1997) Etude de la diversite genetique de maniocs americains( Manihot esculenta Crantz) par les marqueurs moleculaires (RAPD et AFLP) These de Doctorat, ENSAM, Montpellier

    Google Scholar 

  • Connolly AG, Godwin I, Cooper M & DeLacy IND (1994) Interpretation of randomly amplified polymorphic DNA marker data for fingerprinting sweet potato (Ipomoea batatas L.) genotypes. Theor. Appl. Genet. 88(3–7): 332–336

    Google Scholar 

  • Council, National Research (1972) Genetic Vulnerability of Major Crops. National Academy of Sciences, Washington DC

    Google Scholar 

  • Crow JF & Denniston C (1988) Inbreeding and variance effective population numbers. Evolution 42: 482–495

    Google Scholar 

  • De Arroyo MTK (1975) Electrophoretic studies of genetic variation in natural populations of allogamous Limnathes alba and autogamous Limnathes floccosa (Limnathaceae) Heredity 35: 153–164

    Google Scholar 

  • Doebley JF, Goodman MM & Stuber CW (1983) Isozyme variation in maize from southwestern United States and anthropological implications. Maydica 28(2): 97–120

    Google Scholar 

  • Dong J & Wagner DB (1994) Paternally inherited chloroplast polymorphism in Pinus: estimation of diversity and population sub-division, and tests of disequilibrium with a maternally inherited mitochondrial polymorphism. Genetics 136(3): 1187–1194

    Google Scholar 

  • Ellstrand NC (1984) Multiple paternity with the fruits of wild radish, Raphanus sativus. Am. Natur. 123: 819–828

    Google Scholar 

  • Engeln H (1993) Mumien; monster, molekuele. Geo 9: 36–50

    Google Scholar 

  • Engels JMM & Ramanatha Rao V (ed) (1998) Regeneration of Seed Crops and their Wild Relatives, Proceedings of a Consultation Meeting, 4–7 December 1995, ICRISAT, Hyderabad, India. IPGRI, Rome, Italy

  • FAO (1996a) Global plan of action for the conservation and sustainable utilization of plant genetic resources for food and agriculture, FAO, Rome

    Google Scholar 

  • FAO (1996b) Report on the state of the world's plant genetic resources – International Technical Conference on Plant Genetic Resources, Leipzig, Germany, FAO, Rome

  • Frankel OH (1977) Natural variation and its conservation. In: Muhammed A, Aksel R & von Borstel RC (eds) Genetic Diversity in Plants (pp 21–44) Plenum Press, New York

    Google Scholar 

  • Frankel OH & Bennett E (1970) Genetic Resources in Plants – Their Exploration and Conservation. IBP Handbook No. 11. Blackwell, Oxford and Edinburgh

    Google Scholar 

  • Frankel OH & Brown AHD (1984) Plant genetic resources today: A critical appraisal. In: Holden JHW & Williams JT (ed) Crop Genetic Resources: Conservation and Evaluation (pp 249–2557). George Allen and Unwin, London

    Google Scholar 

  • Frankel OH & Hawkes JG (1975) Crop Genetic Resources for Today and Tomorrow. Cambridge University Press, Cambridge. (492p.)

    Google Scholar 

  • Gallez GP & Gottlieb LD (1982) Genetic evidence for the hybrid origin of the diploid plant Stephenomaria diegensis. Evolution 36: 158–167

    Google Scholar 

  • Gepts P & Bliss FA (1988) Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. Econ. Bot. 42: 86–104

    Google Scholar 

  • Gepts P (1998) What can molecular markers tell us about the process of domestication of the common bean? In: Damania AB, Valkoun J, Willcox G & Qualset CO (eds) The Origins of Agriculture and Crop Domestication (pp 198–209). ICARDA/IPGRI/FAO/GRCP

  • Gielly L & Taberlet P (1994) Chloroplast DNA polymorphism at the intergeneric level and plant phylogenies. Comptes Rendus de l'Académie des Sciences, Série III, Sciences de la Vie 317(7): 685–692

    Google Scholar 

  • Goldringer I, Paillard S, Enjalbert J, David JL & Brabant P (1998) Divergent evolution of wheat populations conducted under recurrent selection and dynamic management. Agronomie 18: 413–425

    Google Scholar 

  • Goodell K, Elam DR, Nason JD & Ellstrand NC (1997) Gene flow among small populations of a selfincompatible plant: an interaction between demography and genetics. Amer. J. Bot. 84(10): 1326–1371

    Google Scholar 

  • Goodman M & Stuber CW (1983) Races of maize. VI. Isozyme variation among races of maize in Bolivia. Maydica 28: 169–188

    Google Scholar 

  • Granett J, DeBenedictus JA, Wolpert JA, Weber E & Goheen AC (1991) Phylloxera on rise: deadly insect pest poses increased risk to north coast vineyards. Calif. Agric. 45(2): 30–32

    Google Scholar 

  • Grant V (1981a) The genetic goal of speciation. Biol. Zbl. 100: 473–482

    Google Scholar 

  • Grant V (1981b) Plant Speciation. Columbia University Press, New York.

    Google Scholar 

  • Guarino L (1995) Geographic information systems and remote sensing for plant germplasm collectors. In: Guarino L, Ramanatha Rao V & Reid R (eds) Collecting Plant Genetic Diversity (pp. 315–327) CAB International on behalf of IPGRI in association with FAO/IUCN/UNEP, Wallingford, UK

    Google Scholar 

  • Guarino L, Maxted N & Sawkins M (1999) Analysis of georeferenced data and the conservation and use of plant genetic resources. In: Greene SL & Guarino L (eds) Linking Genetic Resources and Geography: Emerging Strategies for Conserving and Using Crop Biodiversity. ASA Spec. Publ. 27, (pp 1–24). ASA, CSSA, and SSSA, Madison, WI

    Google Scholar 

  • Guarino L, Maxted N, Sawkins M (1998) Analysis of georeferenced data and the conservation and use of plant genetic resources. In: Greene SL & Guarino L (ed) Linking genetic resources and geography: emerging strategies for conserving and using crop biodiversity. Proceedings of a symposium, Anaheim, California, USA, 29 October, 1997 (pp 1–24). CSSA Special Publication No. 27

  • Hamrick JL (1993) Genetic diversity and conservation of tropical trees. In: Drysdale RM, John SET & Yapa AC (eds) Proceedings an International Symposium on Genetic Conservation and Production of Tropical Tree Seed, 14–16 June, Chiang Mai, Thailand (pp 1–10). ASEAN-Canada Forest Tree Centre, Thailand

    Google Scholar 

  • Hamrick JL & Godt MJW (1990) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL & Weir BS (eds) Plant Population Genetics, Breeding and Genetic Resources (pp 43–63). Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Hamrick JL & Godt MJW (1997) Allozyme diversity in cultivated crops. Crop Sci. 37: 26–30

    Google Scholar 

  • Hamrick JL, Godt MJW & Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New Forests 6: 95–124

    Google Scholar 

  • Hamrick JL, Murawski DA & Nason JD (1993) The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations. Vegetation 107/108: 281–297

    Google Scholar 

  • Hanelt P (1988) Taxonomy as a tool for studying plant genetic resources. Kulturpflanze, 36: 169–187

    Google Scholar 

  • Harlan JR (1971) Agricultural origins: centres and noncentres. Science 174: 468–474

    Google Scholar 

  • Harlan JR (1975a) Geographic Patterns of variability in some cultivated plants. J. Heredity 66: 184–191

    Google Scholar 

  • Harlan JR (1975b) Our vanishing genetic resources. Science 188: 618–621

    Google Scholar 

  • Harlan JR (1992) Crops and Man. American Society of Agronomy and Crop Science Society of America, Madison

    Google Scholar 

  • Harlan JR & de Wet JMJ (1971) Towards a rational classification of cultivated plants. Taxon 20: 509–517

    Google Scholar 

  • Harris DR & Hillman GC (1989) Foraging and Farming – The Evolution of Plant Exploitation. One World Archaeology. Unwin Hyman, London

    Google Scholar 

  • Harris SA & Ingram R (1991) Chloroplast DNA and biosystematics: The effect of intraspecific diversity and plastid transmission. Taxon 40: 393–412

    Google Scholar 

  • He G, Prakash CS & Jarret RL (1995) Analysis of genetic diversity in a sweetpotato (Ipomoea batatas) germplasm collection using DNA amplification fingerprinting. Genome 38: 938–945

    Google Scholar 

  • Hirai M, Mitsue S, Kita K & Kajiura I (1990) A survey and isozyme analysis of wild mandarin, tachibana (Citrus tachibana (Mak.) Tanaka) growing in Japan. J. Japan. Soc. Hort. Sci. 59(1): 1–7

    Google Scholar 

  • Hodgkin T, Brown AHD, van Hintum TH & Morales EAV (1995) Core Collections of Plant Genetic Resources, Proceedings of a Workshop. John Wiley & Sons & Co-Publishers IPGRI & Sayce Publishing, Chichester, UK

    Google Scholar 

  • Hodgkin T & Debouck DG (1992) Some possible applications of molecular genetics in the conservation of wild species for crop improvement. In: Adams RP & Adams JE (eds) Conservation of Plant Genes. DNA Banking and In vitro Biotechnology (pp 153–181). USA, Academic Press, San Diego

    Google Scholar 

  • Hodgkin T, Guo Qingyuan, Zhang Xiurong, Zhao Yingzhong, Feng Xiangyun, Gautam PL, Mahajan RK, Bisht IS, Loknathan TR, Mathur PN & Zhou Ming De (1999) Developing sesame core collections in China and India. In: Johnson RC & Hodgkin T (eds) Core Collections for Today and Tomorrow (pp 74–81). CSA/IPGRI, Rome, Italy

    Google Scholar 

  • Hodgkin T, Roviglioni R, de Vicente MC & Dudnik N (2001) Molecular methods in the conservation and use of plant genetic resources. Acta Horticulturae 546: 107–118

    Google Scholar 

  • Holden JHW & Williams JT (1984) Crop Genetic Resources: Conservation and Evaluation. George Allen and Unwin, London

    Google Scholar 

  • IPGRI (1994) In situ conservation of crop and agroforestry species. Prepared for the CGIAR Mid-Term Meeting, 23–26 May 1994, New Delhi, India

  • Jain SK, Molina F & Martins P (1989) Evolution of mixed selfing and random mating: New solutions for an old puzzle. Second Congress of the European Society for Evolutionary Biology, Rome, ESEB

    Google Scholar 

  • Jain SK, Rai KN & Singh RS (1981) Population biology of Avena. XI. Variation in peripheral isolates of Avena barbata, slender oat. Genetica 56: 213–215

    Google Scholar 

  • Jarret RL & Litz RE (1986a) Enzyme polymorphism in Musa acuminata Colla. J. Heredity 77: 183–186

    Google Scholar 

  • Jarret RL & Litz RE (1986b) Isozymes as genetic markers in bananas and plantains. Euphytica 35: 539–549

    Google Scholar 

  • Jarvis DI (1999) Strengthening the scientific basis of in situ conservation of agricultural biodiversity on-farm. Botanica Lithuanica Suppl. 2: 79–90

    Google Scholar 

  • Jarvis DI & Hodgkin T (1999) Wild relatives and crop cultivars: detecting natural introgression and farmer selection of new genetic combinations in agroecosystems. Mol. Ecol. 8: 159–173

    Google Scholar 

  • Jensen RJ, McLeod MJ, Eshbaugh WH & Gutiman SI (1979) Numerical taxonomic analyses of allozymic variation in Capsicum (Solanaceae) Taxon 28: 315–327

    Google Scholar 

  • Johnson RC & Hodgkin T (1999) Core collections for today and tomorrow. CSA/IPGRI, Rome, Italy (p 81)

    Google Scholar 

  • Kahler AL & Allard RW (1981) Worldwide patterns of genetic variation among four esterase loci in barley (Hordeum vulgare L.) Theor. Appl. Genet. 59: 101–111

    Google Scholar 

  • Kannenberg LW & Falk DE (1995) Models for activation of plant genetic resources for crop breeding programs. Can. J of Pl. Sci. 75(1): 45–53

    Google Scholar 

  • Karp A & Edwards KJ (1995) Molecular techniques in the analysis of the extent and distribution of genetic diversity. IPGRI Workshop on Molecular Genetic Tools in Plant Genetic Resources, 9–11 October, Rome, IPGRI

    Google Scholar 

  • Karp A, Isaac PG & Ingram DS (1998) Molecular Tools for Screening Biodiversity. Plants and animals. Chapman & Hall, London. (498 p.)

    Google Scholar 

  • Karp A (2001) The new genetic era: will it help us in managing genetic diversity? In: Engels JMM, Ramanatha Rao V, Brown AHD & Jackson M (eds) Managing Plant Genetic Diversity, Proceedings of the International Conference on Science and Technology for Managing Plant Genetic Diversity in the 21st Century, Kuala Lumpur, Malaysia, 12–16 June 2000. CAB International in conjunction with IPGRI, Wallingford (in press).

    Google Scholar 

  • Kimber G & Yen Y (1990) Genomic analysis of diploid plants. Proc. Natl. Acad. Sci., USA 87: 3205–3209

    Google Scholar 

  • Lanner-Herrera C, Gustafsson M, Falt AS & Bryngelsson T (1996) Diversity in wild populations of Brassica oleracea as estimated by isozyme and RAPD analysis. Genet. Res. Crop Evol. 43: 13–23

    Google Scholar 

  • Lebot V (1992) Genetic vulnerability of Oceania's traditional crops. Expt. Agric. 28: 309–323

    Google Scholar 

  • Levin DA (1977) The organization of genetic diversity in Phlox drummundii. Evolution 31: 477–494

    Google Scholar 

  • Li YC, Fahima T, Beiles A, Korol AB & Nevo E (1999) Microclimatic stress and adaptive DNA differentiation in wild emmer wheat, Triticum dicoccoides. Theor. Appl. Genet. 98: 873–83

    Google Scholar 

  • Liengsiri C, Yeh FC & Boyle TJB (1995) Isozyme analysis of a tropical forest tree, Pterocarpus macrocarpus Kurz. in Thailand. Forest Ecol. Manag. 74: 13–32

    Google Scholar 

  • Loveless MD & Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst. 15: 65–96

    Google Scholar 

  • Louette D, Charrier A & Berthaud J (1997) In situ conservation of maize in Mexico: Genetic diversity and maize seed management in a traditional community. Econ. Bot. 51: 20–38

    Google Scholar 

  • Martin JM, Blake TK & Hockett EA (1991) Diversity among North American spring barley cultivars based on coefficients of parentage. Crop Sci. 31: 1131–1137

    Google Scholar 

  • Maruyama T & Fuerst P (1984) Population bottlenecks and nonequilibrium models in population genetics. I. Allele numbers when populations evolve from zero variability. Genetics 104: 745–763

    Google Scholar 

  • Maruyama T & Fuerst P (1985) Population bottlenecks and nonequilibrium models in population genetics. II. numbers of alleles in small population that was formed from a recent bottleneck. Genetics 111: 675–679

    Google Scholar 

  • Maxted N, van Slageren MW & Rihan JR (1995) Ecogeographic surveys. In: Guarino L, Ramanatha Rao V & Reid (eds) Collecting Plant Genetic Diversity (pp 255–285). CAB International in collaboration with IPGRI, and in association with FAO, IUCN and UNEP, Wallingford

    Google Scholar 

  • McCommas SA & Bryant EH (1990) Loss of electrophoretic variation in serially bottlenecked populations. Heredity 64: 315–321

    Google Scholar 

  • McNeilly T (1997) Patterns of population differentiation. Bocconea 7: 89–93

    Google Scholar 

  • Miller JC & Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor. Appl. Genet. 80(4): 437–448

    Google Scholar 

  • Morden CW, Doebley JF & Schertz KF (1989) Allozyme variation in old world races of Sorghum bicolor (Poaceae) Am. J. Bot. 76(2): 247–255

    Google Scholar 

  • Morikawa T & Leggett JM (1990) Isozyme polymorphism in natural populations of Avena canariensis from the Canary Islands. Heredity 64: 403–411

    Google Scholar 

  • Muona O & Harju A (1989) Effective population sizes, genetic variability and mating system in natural stands and seed orchards of Pinus sylvestris. Silvae Genetica 38: 221–228

    Google Scholar 

  • Muralidharan K & Wemmer C (1994) Transporting and storage of field-collected specimens for DNA without refrigeration for subsequent DNA extraction and analysis. Biotechniques-Euro-Edition, No. 8, 24–27

    Google Scholar 

  • Narain P (1990) Statistical Genetics. John Wiley, New Delhi, India. (599 p.)

    Google Scholar 

  • Nei M, Maruyama T & Chakraborty R (1975) The bottleneck effects and genetic variability in populations. Evolution 29: 1–10

    Google Scholar 

  • Nesbitt KA, Potts BM, Vaillancourt RE, West AK & Reid JB (1995) Partitioning and distribution of RAPD variation in a forest tree species, Eucalyptus globulus (Myrtaceae). Heredity 74: 628–637

    Google Scholar 

  • Nevo E (1978) Genetic variation in natural populations; patterns and theory. Theor. Appl. Genet. 13: 121–177

    Google Scholar 

  • Nevo E (1990) Molecular evolutionary genetics of isozymes: Pattern, theory, and application. In: Ogita ZI & Markert CL (eds) Isozymes: Structure, Function, and Use in Biology and Medicine (Progress in Clinical and Biological Research Vol 344), (pp 701–742). Wiley-Liss Inc

  • Nevo E (1998) Genetic Diversity in wild cereals: regional and local studies and their bearing on conservation ex situ and in situ. Genet. Res. Crop Evol. 45: 355–370

    Google Scholar 

  • Nevo E, Beiles A, Storch N, Doll H & Andersen B (1983) Microgeographic edaphic differentiation in hordein polymorphisms of wild barley. Theor. Appl. Genet. 64: 123–132

    Google Scholar 

  • Nevo E, Beiles A & Ben-Shlomo R (1984) The evolutionary significance of genetic diversity: ecological, demographic and life history correlates. Lect. Notes Biomath. 53: 13–21

  • Nevo E & Beiles A (1989) Genetic diversity of wild emmer wheat in Israel and Turkey. Theor. Appl. Genet. 77: 421–455

    Google Scholar 

  • Nevo E, Beiles A & Krugman T (1988) Natural selection of allozyme polymorphism and microgeographic climatic differentiation in wild emmer wheat (Triticum dicoccoides) Theor. Appl. Genet. 75: 529–538

    Google Scholar 

  • Nevo E, Brown AHD, Zohary D, Storch N & Beiles A (1981) Microgeographic edaphic differentiation in allozyme polymorphisms of wild barley (Hordeum spontaneum, Poaceae) Pl. Syst. Evol. 138: 287

    Google Scholar 

  • Nevo E, Noy-Meir I, Beiles A, Krugman T & Agami M (1991) Natural selection of allozyme polymorphisms: Microgeographical spatial and temporal ecological differentiation in wild emmer wheat. Israel J. Bot. 40: 419–449

    Google Scholar 

  • Nevo E, Zohary D, Brown AHD & Haber M (1979) Allozyme-environment relationship in natural populations of wild barley in Israel. Evolution 33: 815–833

    Google Scholar 

  • Nissilä AJ, Lian TS & Quek P (1998) Simple tools for database management and data analysis for identification of morphological duplicates with key descriptors. Pl. Genet. Reso. Newsl. (in press)

  • Owuor ED, Fahima T, Beiles A, Korol A & Nevo E (1997) Population genetic response to microsite ecological stress in wild barley, Hordeum spontaneum. Mol. Ecol. 6: 1177–1187

    Google Scholar 

  • Pääbo S & Wilson AC (1991) Miocene DNA sequences – a dream come true? Curr. Biol. 1: 45–46

    Google Scholar 

  • Palmer JD, Jansen RK, Michaels HJ, Chase MW & Manhart JR (1988) Chloroplast DNA variation and plant phylogeny. Ann. Missouri Bot. Gard. 75: 1180–1206

    Google Scholar 

  • Parker MA (1991) Local genetic differentiation for disease resistance in a selfing annual. Biol. J. Linnean Soc. 41: 337–349

    Google Scholar 

  • Parnell J (1993) Plant taxonomic research, with special reference to the tropics: problems and potential solutions. Cons. Biol. 7(4): 809–814

    Google Scholar 

  • Perera L, Russell JR, Provan J, McNicol JW & Powell W (1998) Evaluating genetic relationships between indigenous coconut (Coos nucifera L.) accessions form Sri Lanka by means of AFLP profiling. Theor. Appl. Genet. 96: 545–550

    Google Scholar 

  • Perera L, Russell JR, Provan J & Powell W(1999) Identification and characterization of microsatellite loci in coconut (Coos nucifera L.) and the analysis of coconut populations in Sri Lanka. Mol. Ecol. 8: 335–346

    Google Scholar 

  • Perry DJ & Knowles P (1990) Evidence of high self-fertilization in natural populations of eastern white cedar (Thuja occidentalis) Can. J. Bot. 68: 663–668

    Google Scholar 

  • Phippen WB, Kresovich S, Candelas FG & McFerson JR (1997) Molecular characterization can quantify and partition variation among genebank holdings: a case study with phenotypically similar accessions of Brassica oleracea var. capitata L. (cabbage)‘Golden Acre’. Theor. Appl. Genet. 94: 227–234

    Google Scholar 

  • Plucknett DL, Smith NJH, Williams JT & Anishetty NM (1987) Genebanks and World's Food. Princeton University Press, Princeton

    Google Scholar 

  • Poncet V, Lamy F, Enjalbert J, Joly H, Sarr A & Robert T (1998) Genetic analysis of the domestication syndrome in pearl millet (Pennisetum glaucum L, Poaceae): inheritance of the major characters. Heredity 81(6): 648–658

    Google Scholar 

  • Porceddu E & Jenkins G (1982) Seed Regeneration in Cross-Pollinated Species. A.A. Balkema, Rotterdam

    Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S & Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2: 225–238

    Google Scholar 

  • Quiros CF, Brush SB, Douches DS, Zimmerer KS & Huestis G (1990) Biochemical and folk assessment of variability of Andean cultivated potatoes. Econ. Bot. 44(2): 254–266

    Google Scholar 

  • Ramanatha Rao V (1991) Problems and methodologies for management and retention of genetic diversity in germplasm collections. In: Becker B (ed) Proceedings of an ATSAF/IBPGR Workshop on Conservation of Plant Genetic Resources (pp 61–68). ATSAF/IBPGR, Bonn

    Google Scholar 

  • Ramanatha Rao V, Quek P, Bhag Mal & Zhou Ming-De (1999) Role of IPGRI in promoting research on PGR conservation and use, and GPA implementation, with a focus on Asia and the Pacific. In: Zhou Ming-De, Zhang Zongwen & Ramanatha Rao V (ed) Proceedings of a National Workshop on Conservation and Utilization of Plant Genetic Resources in China, Beijing, 25–27 October 1999 (in press) IPGRI Office for East Asia, Beijing

    Google Scholar 

  • Rana RB, Gauchan D, Rijal DK, Khatiwada SP, Paudel CL, Chaud-hary P & Tiwari PR (2000). Nepal: Socio-economic data collection and analysis. In: Jarvis D, Sthapit D & Sears L (eds) Conserving agricultural biodiversity in situ: A scientific basis for sustainable agriculture. Proc of a workshop, 5–12 July 1999, Pokhara Nepal (pp 54–59). IPGRI, Rome

    Google Scholar 

  • Rao AN & Ramanatha Rao V (1999a) Bamboo – Taxonomy, Ecology, Conservation, Genetic Improvement and Biotechnology. Serdang, Malaysia, IPGRI-APO, Serdang and INBAR, Beijing

    Google Scholar 

  • Rao AN & Ramanatha Rao V (1999a) Priority Species of Bamboo and Rattan (2nd Edition) Serdang, Malaysia, IPGRI-APO, Serdang, Malaysia and INBAR, Beijing, China

    Google Scholar 

  • Raybould AF, Mogg RJ & Clarke RT (1996) The genetic structure of Beta vulgaris ssp. maritima (sea beet) populations: RFLPs and isozymes show different patterns of gene flow. Heredity 77: 245–250

    Google Scholar 

  • Rick CM, Fobes JF & Holle M (1977) Genetic variation in Lycopersicon pimpenellifolium. Evidence of evolutionary change in mating system. Plant Syst. Evol. 127: 139–170

    Google Scholar 

  • Rieseberg LH (1995) The role of hybridization in evolution: old wine in new skins. Am. J. Bot. 82(7): 944–953

    Google Scholar 

  • Rieseberg LH, Carter R & Zona S (1990) Molecular tests of the hypothesized hybrid origin of two diploid Helianthus species (Asteraceae). Evolution 44(6): 1498–1511

    Google Scholar 

  • Riggs LA (1990) Conserving genetic resources on-site in forest ecosystems. Forest Ecol. Manag. 35: 45–68

    Google Scholar 

  • Robichaux RH, Friar EA & Mount DW (1997) Molecular genetic consequences of a population bottleneck associated with reintroduction of the Mauna Kea Silversword (Argyroxiphium sandwicense ssp. sandicense [Asteraceae]) Cons. Bio. 11(5): 1140–1146

    Google Scholar 

  • Saad MS, Ramisah MS, Yunus AG, Nissila E & Nordin MS (1999) Application of RAPD markers in duplicate detection in sweetpotato germplasm. Presented at a Symposium on Genetic Resources of Borneo, Kota Kinabalu, Sabah, Malaysia, 26–28 October 1999

  • Saghai-Maroof MA, Allard RW & Qhang Q (1990) Genetic diversity and ecogeographical differentiation among ribosomal DNA alleles in wild and cultivated barley. Proc. Natl. Acad. Sci., USA 87(21): 8486–8490

    Google Scholar 

  • Schoen DJ & Brown AHD (1991) Intraspecific variation in population gene diversity and effective population size correlates with mating systems in plants. Proceedings of the National Academy of Science, USA 88: 4494–4497

    Google Scholar 

  • Schoen DJ & Brown AHD (1993) Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc. Natl. Acad. Sci., USA 90: 10623–10627

    Google Scholar 

  • Shiva V (1994) Agriculture and food production. UNESCO/ Environmental Education Dossiers No. 9 (May): 2–3

  • Smale M (1997) The green revolution and wheat genetic diversity. iSome unfounded assumptions. World Development. 25: 1259–1269

    Google Scholar 

  • Smith NJH & Schultes RE (1990) Deforestation and shrinking crop gene pools in Amazonia. Envl. Cons. 17(3): 227–234

    Google Scholar 

  • Spagnoletti Zeuli PL & Qualset CO (1987) Geographical diversity for quantitative spike characters in a world collection of durum wheat. Crop Sci. 27: 235–241

    Google Scholar 

  • Spooner DM, Sytsma KJ & Conti E (1991) Chloroplast DNA evidence for genome differentiation in wild potatoes (Solanum sect. Petota: Solanaceae). Am. J. Bot. 78: 1354–1366

    Google Scholar 

  • Spooner DM, Douches DS & Andrés Contreras M (1992) Allozyme variation within Solanum Sect. Petota, Ser. Etuberosa (Solanaceae). Am. J. Bot. 79(4): 467–471

    Google Scholar 

  • Staub JE, Box J, Meglic V, Horejsi T & McCreight JD (1997) Comparison of isozyme and random amplified polymorphic DNA data for determining intraspecific variation in Cucumis. Genet. Reso. Crop Evol. 44: 257–269

    Google Scholar 

  • Stebbins GL (1957) The hybrid origin of microspecies in the Elymus glaucus complex. Cytologia Suppl. Vol.: 336–340

    Google Scholar 

  • Sthapit BR & Witcombe JR (1998) Inheritance of tolerance to chilling stress in rice during germination and plumule greening. Crop Sci. 38: 660–665

    Google Scholar 

  • Sthapit BR & Jarvis D (1999) On-farm conservation of crop genetic resources through use. In: Mal B, Mathur PN & Ramanatha Rao V (eds) Proceedings of South Asia Network on Plant Genetic Resources (SANPGR), Proceedings of Fourth Meeting, Kathmandu, Nepal 1–3 September 1998. New Delhi, India (pp 151–166). IPGRI South Asia Office, New Delhi

    Google Scholar 

  • Suneson CA (1960) Genetic diversity – a protection against diseases and insects. Agron. J. 52: 319–321

    Google Scholar 

  • Sytsma KJ (1990) DNA and morphology: inference of plant phylogeny. Tree 5(4): 104–110

    Google Scholar 

  • Sytsma KJ, Smith JF & Berry PE (1991) The use of chloroplast DNA to assess biogeography and evolution of morphology, breeding systems, and flavonoids in Fuchsia sect.Skinnera (Onagraceae) Systematic Bot. 16(2): 257–269

    Google Scholar 

  • Tachida H & Yoshimaru H (1996) Genetic diversity in partially selfing populations with the steppingstone structure. Heredity 77(5): 469–475

    Google Scholar 

  • Tohme J, Gonzalez DO, Beebe S & Duque MC (1996) AFLP analysis of gene pools of a wild bean core collection. Crop Sci. 36: 1375–1384

    Google Scholar 

  • Trinh LN, Tuan DT, Brar DS, de los Reyes BG & Khush GS (1995) Classification of traditional rice germplasm from Vietnam based on isozyme pattern. In: Denning DL & Zuan V-T (eds) Vietnam and IRRI: a Partnership in Rice Research, Proceedings of a conference held in Hanoi, Vietnam, 4–7 May 1994 (pp 81–83). IRRI, Manila, Philippines

    Google Scholar 

  • Tsumura Y, Kawahara T, Wickneswari R & Yoshimura K (1996) Molecular phylogeny of Dipterocarpaceae in Southeast Asia using RFLP and PCR-amplified chloroplast genes. Theor. Appl. Genet. 93: 22–29

    Google Scholar 

  • van Hintum TJL & Visser DL (1995a) Duplication within and between germplasm collections. I. Identifying duplication on the basis of passport data. Genet. Reso. Crop Evol. 42(2): 127–133

    Google Scholar 

  • van Hintum TJL & Visser DL (1995b) Duplication within and between germplasm collections. II. Duplication in four European barley collections. Genet. Reso. Crop Evol. 42(2): 135–145

    Google Scholar 

  • Wang CP, Yu ZH, Ye GH, Chu CD, Chao SS, Chen SY, Yao CY & Zhao HR (1980a) A taxonomical study of Phyllostachys, China I. Acta Phytotaxon. Sin. 18(1): 15–19

    Google Scholar 

  • Wang CP, Yu ZH, Ye GH, Chu CD, Chao SS, Chen SY, Yao CY & Zhao HR (1980b) A taxonomical study of Phyllostachys, China II. Acta Phytotaxon. Sin. 18(2): 168–193

    Google Scholar 

  • Warwick SI & Black LD (1993) Molecular relationships in subtribe Brassicinae (Cruciferae, tribe Brassiceae). Can. J. Bot. 71: 906–918

    Google Scholar 

  • Watanabe KN, Ramanatha Rao V & Iwanaga M(1998) International trends on the conservation and use of plant genetic resources. Pl. Biotechnology 15(3): 115–122

    Google Scholar 

  • Watanabe M, Ito M & Kurita S (1994) Chloroplast DNA phylogeny of Asia Bamboos (Bambusoideae, Poaceae) and its systematic implication. J. Pl. Res. 107: 253–261

    Google Scholar 

  • Weltzien E (1989) Differentiation among barley landrace populations from the Near East. Euphytica 43: 29–39

    Google Scholar 

  • Weltzien E & Fichbeck G (1990) Performance and variability of local barley landraces in near-eastern environments. Pl. Breed. 104: 58–67

    Google Scholar 

  • Wendel JF & Parks CR (1985) Genetic diversity and population structure in Camellia japonica L. (Theaceae) Am. J. Bot. 72: 52–65

    Google Scholar 

  • Yeh FC-H & Layton C (1979) The organization of genetic variability in central and marginal populations of lodgepole pine, Pinus contorta ssp latifolia. Can. J. Genet. Cytol. 21: 487–503

    Google Scholar 

  • Yeh, FC-H & O'Malley D. (1980) Enzyme variations in natural populations of Douglasfir, Pseudostuga nenziesii (Mirb.) Franco, from British Columbia. 1. Genetic variation patterns in coastal populations. Silvae Genetica 29: 83–92

    Google Scholar 

  • Yen DE & Wheeler JM (1968) Induction of taro into the Pacific: the indications of chromosome numbers. Ethnology 7: 259–267

    Google Scholar 

  • Yen DE (1991) Domestication: lessons from New Guinea. In: Pawely A (ed) Man and a half (pp 558–569), Polynesian Society, Auckland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ramanatha Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramanatha Rao, V., Hodgkin, T. Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell, Tissue and Organ Culture 68, 1–19 (2002). https://doi.org/10.1023/A:1013359015812

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013359015812

Navigation